High temperature-humidity index compromises sperm quality and fertility of Holstein bulls in temperate climates.

J Dairy Sci

Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium. Electronic address:

Published: October 2020

AI Article Synopsis

  • * This study assessed the effects of temperature-humidity index (THI) on sperm quality in Holstein bulls, evaluating data from 29,170 ejaculates across different seasons, ages, and locations.
  • * While high THI did not affect fresh sperm quality, it significantly reduced the cryotolerance of frozen sperm, especially in older bulls, indicating that climate conditions during spermatogenesis have critical implications for reproductive success.

Article Abstract

Rising temperatures caused by climate change have adverse effects on cattle physiology, welfare, health, and reproduction. Heat stress in cows affects the oocyte and embryo directly through heat shock on cellular function. Fewer data are available on the effect of high temperatures on male fertility. Temperature-humidity index (THI) is a measure for assessing the risk of heat stress that combines the effects of temperature and humidity. The aim of this study was to determine the relationship between THI and fresh or frozen-thawed sperm quality of Holstein bulls kept in temperate climates. Bull sperm data of 29,170 ejaculates from 933 bulls collected at 3 Dutch artificial insemination centers between 2015 and 2018 were evaluated. The assessed variables included total sperm motility and morphology of fresh semen, and total sperm motility, morphology, and progressive motility of frozen semen 0 and 3 h after thawing. In addition, 56-d nonreturn rates were analyzed. The assessed effects were season and THI on the day of semen collection and during spermatogenesis (30 d before collection), bull, age of bull, year, and location. Bulls were divided into 2 categories according to their age: young (<36 mo) and older (>36 mo). Overall sperm quality of young bulls improved as age increased. No effect of THI on fresh sperm variables was observed in either young or older bulls. However, high THI at spermatogenesis negatively affected the cryotolerance of sperm cells. Sperm cells from young and older bulls showed a pronounced decrease (14-18%) of the assessed variables 3 h after thawing after the increase of THI during spermatogenesis in autumn. Remarkably, older bulls were more sensitive to THI at spermatogenesis compared with semen collection, showing up to a 3.8 times higher negative effect on frozen sperm quality. However, an elevated THI at semen collection produced a tendency toward decreased 56-d nonreturn rates as the age of the bull increased. Although this decrease was up to 4%, rising temperatures may still cause important economic losses in the future. For the first time, the present study confirmed that climate compromises not only sperm quality, but also dairy bull fertility.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2019-18089DOI Listing

Publication Analysis

Top Keywords

sperm quality
20
semen collection
12
older bulls
12
thi spermatogenesis
12
sperm
11
compromises sperm
8
bulls
8
holstein bulls
8
bulls temperate
8
temperate climates
8

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Nomogram to predict cumulative live birth rate following in vitro fertilization/intracytoplasmic sperm injection cycles in patients with endometriosis.

BMC Pregnancy Childbirth

January 2025

Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.

Background: The success of in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) in endometriosis patients varies widely, and predicting the likelihood of achieving a live birth remains a clinical challenge. This study aims to develop a predictive nomogram for assessing the cumulative live birth (CLB) rate following IVF/ICSI cycles among patients with endometriosis.

Method: A retrospective cohort study was conducted to analyze the clinical data of 1457 patients with endometriosis after IVF/ICSI treatment from January 2017 to August 2022.

View Article and Find Full Text PDF

Epididymal bull sperm selection by Percoll® density-gradient centrifugation prior to conventional or ultra-rapid freezing enhances post-thaw sperm quality.

Cryobiology

January 2025

Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.

This study evaluated the effectiveness of Percoll® density gradient centrifugation (Percoll-DGC) for selecting bull epididymal sperm prior to conventional slow (CS) or ultra-rapid (UR) freezing and its effects on sperm quality. Fifteen pooled samples from 30 epididymides (2 different samples/pool) of 15 bulls were split into two aliquots assigned to either CS or UR freezing. Samples were either selected using Percoll-DGC (40/80 %) or left non-selected (control), resulting in four pre-freezing treatments: Percoll-CS, Control-CS, Percoll-UR, and Control-UR.

View Article and Find Full Text PDF

Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage.

J Hazard Mater

January 2025

Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address:

Bisphenol A (BPA), a common endocrine disrupting chemical (EDC), has shown detrimental effects on sperm quality and function in experimental models. However, epidemiological evidence is inconsistent and also there exists a notable lack of data on its analogues, such as bisphenol F (BPF) and bisphenol S (BPS). To investigate the relationships between BPA, BPF and BPS exposures and sperm DNA damage, we conducted a cross-sectional study recruiting 474 Chinese men from an infertility clinic in Wuhan, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!