Visualization of oxidative stress-induced carbonylation in live mammalian cells.

Methods Enzymol

Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, United States. Electronic address:

Published: June 2021

Oxidative stress (OS) is associated with a wide variety of diseases and disorders. Detection of oxidative stress in living systems typically relies on fluorescent probes for reactive oxygen species (ROS), which is challenging because of their short life span and high reactivity. Oxidative damage caused by OS produces a more stable signal, but these biomarkers are usually detected using techniques that are not compatible with live cells. OS-induced biomolecule carbonylation is a stable modification that also possesses a chemically reactive functional group, and its detection typically employs a chemical reaction with a hydrazine-containing probe within the process. These hydrazone-forming reactions require strong acid catalysis or nucleophilic catalysis with an aromatic amine when performed on isolated biomaterial or on fixed cells. In live cells, however, hydrazone-forming reactions are surprisingly facile. Fluorophores possessing hydrazine or hydrazide functional groups can undergo reaction with carbonylated biomolecules in live cells, and these products can be observed using fluorescence microscopy. In this chapter, standard methods for detection of biomolecule carbonylation in cell lysate and in intact cells are enumerated. Protocols for fluorescently labeling biomolecule carbonylation in live cells are provided for commercially available fluorophores. Also described is a one-step protocol that employs one of the hydrazine-modified fluorophores developed in our lab, which are designed to be live-cell compatible and to undergo a spectral change upon hydrazone formation. Finally, a procedure for observing both biomolecule carbonylation and ROS production simultaneously is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2020.04.040DOI Listing

Publication Analysis

Top Keywords

live cells
16
biomolecule carbonylation
16
carbonylation live
8
oxidative stress
8
hydrazone-forming reactions
8
cells
7
carbonylation
5
live
5
visualization oxidative
4
oxidative stress-induced
4

Similar Publications

Background: The excessive use of antibiotics is a major contributor to the global issue of antimicrobial resistance (AMR), a significant threat to human and animal health. Hence, assessing new strategies for managing Multi-Drug Resistant (MDR) microorganisms is vital. In this study, the use of mechanically isolated mature adipose cells (MIMACs) and their lysate (Adipolysate) as a new sustainable antimicrobial agent was assessed against Methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.

View Article and Find Full Text PDF

In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.

View Article and Find Full Text PDF

Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification.

J Lipid Res

January 2025

Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:

The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.

View Article and Find Full Text PDF

Protocol for visualizing the chromatin assembly properties of epigenetic protein complexes via an HTM module-mediated artificial tethering system.

STAR Protoc

January 2025

School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China. Electronic address:

The detailed chromatin assembly processes for many epigenetic regulatory complexes are largely unknown. Here, we present a protocol utilizing heterochromatin-targeting module (HTM) module-mediated chromatin tethering followed by microscopy-based visualization to detect the recruitment priority between two components in Polycomb repressive complex 1 (PRC1). Moreover, we detail procedures for detecting the resultant histone-modifying activities of PRC1 using immunofluorescence (IF) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!