Excitatory synapse formation begins in mid-fetal gestation. However, due to our inability to image fetal synaptogenesis, the initial formation of synapses remains understudied. The recent development of human fetal brain spheroids provides access to this critical period of synapse formation. Using human neurons and brain spheroids, we address how altered actin regulation impacts the formation of excitatory synapses during fetal brain development. Prior to synapse formation, inhibition of RhoA kinase (ROCK) signaling promotes neurite elongation and branching. In addition to increasing neural complexity, ROCK inhibition increases the length of protrusions along the neurite, ultimately promoting excitatory synapse formation in human cortical brain spheroids. A corresponding increase in Rac1-driven actin polymerization drives this increase in excitatory synaptogenesis. Using STORM super-resolution microscopy, we demonstrate that actomyosin regulators, including the Rac1 regulator, α-PIX, and the RhoA regulator, p115-RhoGEF, localize to nascent excitatory synapses, where they preferentially localize to postsynaptic compartments. These results demonstrate that coordinated RhoGTPase activities underlie the initial formation of excitatory synapses and identify critical cytoskeletal regulators of early synaptogenic events.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.24692DOI Listing

Publication Analysis

Top Keywords

synapse formation
16
fetal brain
12
brain spheroids
12
excitatory synapses
12
human fetal
8
brain development
8
excitatory synapse
8
initial formation
8
formation human
8
formation excitatory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!