Hypothesis: Micron and nano-scale particles are increasingly used to stabilize water-in-oil (W/O) emulsions. Though remarkably stable, the resulting emulsions can be broken by adding low molecular weight surfactants that modify the wettability of the interfacially-adsorbed particles.
Experiments: W/O emulsions were prepared using lipophilic crystals of the monoglyceride glycerol monostearate (GMS), followed by addition of sorbitan monooleate (SMO) at concentrations below and above its critical micelle concentration (CMC). Systematic measurements of interfacial tension and three-phase contact angles, as well as characterization of emulsion sedimentation and microstructure, were used to assess GMS crystal wettability and emulsion destabilization.
Findings: GMS crystals formed shells around the dispersed droplets, resulting in emulsions stable against breakdown under quiescent conditions. With SMO concentrations added below CMC, emulsion stability was not significantly affected. At SMO concentrations above CMC, the integrity of the crystalline shell was markedly affected. Notably, the GMS crystals transitioned from preferential oil-wet to water-wet behavior, eventually leading to their diffusion into the droplets. Therefore, in-situ modification of particle wettability at the oil-water interface was responsible for emulsion breakdown. Findings from this study may provide a pathway for the design of particle-stabilized W/O emulsions with controllable breakdown properties for applications such as tailored release of aqueous bioactive compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.06.106 | DOI Listing |
Int J Biol Macromol
January 2025
National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Electronic address:
Tannin is the main naturally occurring phytochemicals in Rubus chingii Hu with poor digestive stability and low bioavailability. In this study, oil-in-water (O/W) and water-in-oil (W/O) emulsion gels encapsulating Rubus chingii Hu ellagitannins (RCHT) were fabricated and their structure, rheology, stability, in vitro digestion and in vivo metabolism were characterized. The W/O emulsion gel showed smaller particle size, better pH stability, thermal stability, centrifugal stability and storage stability.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China.
Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
Sci Rep
December 2024
School of architecture, Ocean and energy power engineering, Wuhan University of Technology, Wuhan, 430070, China.
During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Massachusetts College of Pharmacy and Health Sciences (MCPHS University) Department of Pharmaceutical Sciences, School of Pharmacy, 19 Foster St., Worcester, MA 01608, USA. Electronic address:
Triple-negative breast cancer (TNBC) presents with resistance phenotypes to certain therapies, such as cisplatin, often requiring higher dosing, with associated acquired tumor resistance, renal toxicity, and variable patient responses. A self-emulsifying drug delivery (SEDD) formulation approach was proposed to overcome the limitations of cisplatin in TNBC, focusing on improving intracellular cisplatin and control siRNA uptake as a proof-of-principle of dual drug delivery. Four SEDD formulations were prepared and optimized for cisplatin (o/w) emulsion and FITC-siRNA (w/o) emulsion using pseudo-ternary phase diagrams to facilitate the formation of water-in-oil-water (w/o/w) emulsions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!