Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs.

Arch Biochem Biophys

Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Published: September 2020

Most problems associated with chemotherapeutic agents involve non-specific cytotoxicity, low intratumoral accumulation and drug resistance. Targeted drug delivery systems (TDDS) based on nanoparticles (NPs) are a new strategy for better therapeutic efficiency, along with reduction of side effects commonly seen with cancer drugs. Poly (lactic-co-glycolic acid) (PLGA), as one of the furthest developed synthetic polymer, has gained significant attention because of excellent properties-including biodegradability and biocompatibility, controlled release of drug, protection of drug or gene from decomposition and ability to modify surface with targeting agents for both cancer diagnosis and therapy. Aptamers are single-stranded RNA or DNA that can fold through intramolecular interactions into specific three-dimensional structures to selectively and exclusively bind with interested biomarkers. In this review, we explain the latest developments regarding the application of aptamer-decorated PLGA NPs in delivery of therapeutic agents or cancer-related genes into cancer cells. Additionally, we discuss the most recent efforts in the field of aptamer-grafted PLGA-based NPs as theranostics and stimuli-responsive agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2020.108485DOI Listing

Publication Analysis

Top Keywords

aptamer-conjugated plga
4
plga nanoparticles
4
nanoparticles delivery
4
delivery imaging
4
cancer
4
imaging cancer
4
cancer therapeutic
4
therapeutic drugs
4
drugs problems
4
problems associated
4

Similar Publications

Development and testing of nanoparticles delivery for P7C3 small molecule using injury models.

Mol Cell Biochem

September 2024

Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA.

The use of nanoparticles (NPs) has emerged as a potential tool for safe and effective drug delivery. In the present study, we developed small molecule P7C3-based NPs and tested its efficacy and toxicity along with the tissue specific aptamer-modified P7C3 NPs. The P7C3 NPs were prepared using poly (D, L-lactic-co-glycolic acid) carboxylic acid (PLGA-COOH) polymer, were conjugated with skeletal muscle-specific RNA aptamer (A01B P7C3 NPs) and characterized for its cytotoxicity, cellular uptake, and wound healing in vitro.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers.

View Article and Find Full Text PDF

Reconstruction of the knee meniscus remains a significant clinical challenge owing to its complex anisotropic tissue organization, complex functions, and limited healing capacity in the inner region. The development of in situ tissue-engineered meniscal scaffolds, which provide biochemical signaling to direct endogenous stem/progenitor cell (ESPC) behavior, has the potential to revolutionize meniscal tissue engineering. In this study, a fiber-reinforced porous scaffold was developed based on aptamer Apt19S-mediated mesenchymal stem cell (MSC)-specific recruitment and dual growth factor (GF)-enhanced meniscal differentiation.

View Article and Find Full Text PDF

Most problems associated with chemotherapeutic agents involve non-specific cytotoxicity, low intratumoral accumulation and drug resistance. Targeted drug delivery systems (TDDS) based on nanoparticles (NPs) are a new strategy for better therapeutic efficiency, along with reduction of side effects commonly seen with cancer drugs. Poly (lactic-co-glycolic acid) (PLGA), as one of the furthest developed synthetic polymer, has gained significant attention because of excellent properties-including biodegradability and biocompatibility, controlled release of drug, protection of drug or gene from decomposition and ability to modify surface with targeting agents for both cancer diagnosis and therapy.

View Article and Find Full Text PDF

Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The "core-shell" targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!