Neurobiology of glycine transporters: From molecules to behavior.

Neurosci Biobehav Rev

Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:

Published: November 2020

Glycine transporters (GlyTs) are Na/Cl-dependent neurotransmitter transporters, responsible for l-glycine uptake into the central nervous system. GlyTs are members of the solute carrier family 6 (SLC6) and comprise glycine transporter type 1 (SLC6A9; GlyT1) and glycine transporter type 2 (SLC6A5; Glyt2). GlyT1 and GlyT2 are expressed on both astrocytes and neurons, but their expression pattern in brain tissue is foremost related to neurotransmission. GlyT2 is markedly expressed in brainstem, spinal cord and cerebellum, where it is responsible for glycine uptake into glycinergic and GABAergic terminals. GlyT1 is abundant in neocortex, thalamus and hippocampus, where it is expressed in astrocytes, and involved in glutamatergic neurotransmission. Consequently, inhibition of GlyT1 transporters can modulate glutamatergic neurotransmission through NMDA receptors, suggesting an alternative therapeutic strategy. In this review, we focus on recent progress in the understanding of GlyTs role in brain function and in various diseases, such as epilepsy, hyperekplexia, neuropathic pain, drug addiction, schizophrenia and stroke, as well as in neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2020.07.025DOI Listing

Publication Analysis

Top Keywords

glycine transporters
8
glycine transporter
8
transporter type
8
expressed astrocytes
8
glutamatergic neurotransmission
8
neurobiology glycine
4
transporters
4
transporters molecules
4
molecules behavior
4
glycine
4

Similar Publications

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Genetic Background of Macular Telangiectasia Type 2.

Int J Mol Sci

January 2025

Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.

Macular telangiectasia type 2 (MacTel) is a slowly progressive macular disorder that is often diagnosed late due to the gradual onset of vision loss. Recent advances in diagnostic techniques have facilitated earlier detection and have shown that MacTel is more common than initially thought. The disease is genetically complex, and multiple variants contribute incrementally to the overall risk.

View Article and Find Full Text PDF

Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days.

View Article and Find Full Text PDF

Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.

View Article and Find Full Text PDF

Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield.

Environ Res

January 2025

Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:

Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!