Lipoproteins play a central role in the development of atherosclerosis. High and low-density lipoproteins (HDL and LDL), known as 'good' and 'bad' cholesterol, respectively, remove and/or deposit lipids into the artery wall. Hence, insight into lipid exchange processes between lipoproteins and cell membranes is of particular importance in understanding the onset and development of cardiovascular disease. In order to elucidate the impact of phospholipid tail saturation and the presence of cholesterol in cell membranes on these processes, neutron reflection was employed in the present investigation to follow lipid exchange with both HDL and LDL against model membranes. Mirroring clinical risk factors for the development of atherosclerosis, lower exchange was observed in the presence of cholesterol, as well as for an unsaturated phospholipid, compared to faster exchange when using a fully saturated phospholipid. These results highlight the importance of membrane composition on the interaction with lipoproteins, chiefly the saturation level of the lipids and presence of cholesterol, and provide novel insight into factors of importance for build-up and reversibility of atherosclerotic plaque. In addition, the correlation between the results and well-established clinical risk factors suggests that the approach taken can be employed also for understanding a broader set of risk factors including, e.g., effects of triglycerides and oxidative stress, as well as local effects of drugs on atherosclerotic plaque formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2020.158769DOI Listing

Publication Analysis

Top Keywords

presence cholesterol
16
risk factors
12
model membranes
8
saturation presence
8
development atherosclerosis
8
hdl ldl
8
lipid exchange
8
cell membranes
8
clinical risk
8
atherosclerotic plaque
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!