Warm-water piscine francisellosis is a granulomatous bacterial disease caused by Francisella orientalis (Fo). The disease has been detected in a wide range of fish species globally, causing mortalities as high as 90% and significant economic losses. Currently there are no commercially available vaccines and few treatment options exist. In the current study, two novel recombinant vaccines were prepared using diatom-expressed IglC or bacterial-expressed GroEL proteins. The vaccine antigens were emulsified with either nanoparticles or a commercially available oil-based adjuvant. Nile tilapia, Oreochromis niloticus, fingerlings were immunized intracoelomically with the recombinant IglC or GroEL vaccines, diatoms alone or phosphate buffer saline. Approximately 840-degree days post-vaccination, fish were challenged via immersion with 10 CFU/mL of wild-type Fo. Twenty-one days post challenge (dpc), the highest relative percent survival was recorded in the IglC-Montanide group (75%), compared to 53%, 50%, 22%, 19% and 16% in the IglC-nanoparticles, GroEL-Montanide, GroEL-nanoparticles, diatoms-Montanide and diatoms-nanoparticles groups, respectively. Protection correlated with significantly higher specific antibody responses in the IglC-Montanide group. Moreover, a significantly lower bacterial load was detected in spleen samples from the IglC-Montanide survivor tilapia compared to the other experimental groups. This is the first report of recombinant vaccines against piscine francisellosis in tilapia. The Fo vaccines described in our study may facilitate development of a safe, cost-effective and highly protective vaccine against francisellosis in farmed tilapia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2020.07.045 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.
Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.
Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.
ACS Nano
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States.
Structural variants of the synthetic opioid fentanyl are a major threat to public health. Following an investigation showing that many derivatives are poorly detected by commercial lateral flow and related assays, we created hapten conjugate vaccines using an immunogenic virus-like particle carrier and eight synthetic fentanyl derivatives designed to mimic the structural features of several of the more dangerous analogues. Immunization of mice elicited strong antihapten humoral responses, allowing the screening of hundreds of hapten-specific hybridomas for binding strength and specificity.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
Objectives: To determine the prevalence of self-reported delayed adverse events (DAEs), major AEs, and flares following COVID-19 vaccinations among patients with autoimmune rheumatic diseases (AIRDs) in Malaysia.
Methodology: An electronically validated survey from the COVID-19 vaccination in autoimmune diseases (COVAD) study group was distributed in July 2021 to patients with autoimmune diseases and healthy controls (HCs). The survey collected data on DAEs (any AE that persisted or occurred after 7 days of vaccination), any early or delayed major adverse events (MAEs), and flares following COVID-19 vaccination.
J Gen Virol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Beijing 100052, PR China.
Species A rotaviruses (RVs), which belong to the family and contain a genome of 11 segmented dsRNA segments, are a leading cause of severe acute gastroenteritis in infants and children younger than 5 years of age. We previously developed a strategy to recover rotavirus vaccine strain LLR from 11 cloned plasmids. Here, we report an improved reverse genetics system for LLR by combining two or three transcriptional cassettes in a single plasmid, which substantially enhances rescue efficiency from 66.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.
The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!