Spatial Separation between Two Sounds of an Oddball Paradigm Affects Responses of Neurons in the Rat's Inferior Colliculus to the Sounds.

Neuroscience

Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada. Electronic address:

Published: September 2020

The ability to sense occasionally occurring sounds in an environment is critical for animals. To understand this ability, we studied responses to acoustic oddball paradigms in the rat's midbrain auditory neurons. An oddball paradigm is a random sequence of stimuli created using two tone bursts, with one presented at a high probability (standard stimulus) and the other at a low probability (oddball stimulus). The sounds were either colocalized at the ear contralateral to a neuron under investigation (c90° azimuth) or separated with one at c90° while the other at another azimuth. We found that most neurons generated stronger responses to a sound at c90° when it was presented as an oddball than as a standard stimulus. Relocating one sound from c90° to another azimuth changed both responses to the relocated sound and the sound that remained at c90°. Most notably, the response to an oddball stimulus at c90° was increased when a standard stimulus was relocated from c90° to a location that was in front of the animal or on the ipsilateral side of recording. The increase was particularly large in neurons that displayed transient firing under contralateral stimulation but no firing under ipsilateral stimulation. These neurons likely play a particularly important role in using spatial cues to detect occasionally occurring sounds. Results suggest that effects of spatial separation between two sounds of an oddball paradigm on responses to the sounds were dependent on changes in the level of adaptation and binaural inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.07.027DOI Listing

Publication Analysis

Top Keywords

oddball paradigm
12
standard stimulus
12
c90° azimuth
12
spatial separation
8
separation sounds
8
sounds oddball
8
paradigm responses
8
occasionally occurring
8
occurring sounds
8
oddball stimulus
8

Similar Publications

Visual processing is crucial for sports performance, influencing athletes' ability to interpret and respond to visual stimuli. This study investigated distinct visual processing patterns among Thai elite athletes in gymnastics, soccer, and esports, utilizing visual P300 event-related potentials (P300 ERPs). Forty-two female athletes (14 gymnasts, 14 soccer players, and 14 esports athletes) participated.

View Article and Find Full Text PDF

Neural processing of auditory stimuli in rats: translational aspects using auditory oddball paradigms.

Behav Brain Res

January 2025

Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.

Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.

View Article and Find Full Text PDF

Evoked potential metrics extracted from an EEG exam can provide novel sources of information regarding brain function. While the P300 occurring around 300 ms post-stimulus has been extensively investigated in relation to mild cognitive impairment (MCI), with decreased amplitude and increased latency, the P200 response has not, particularly in an oddball-stimulus paradigm. This study compares the auditory P200 amplitudes between MCI (28 patients aged 74(8)) and non-MCI, (35 aged 72(4)).

View Article and Find Full Text PDF

Intact Neural Responding to Hearing One's Own Name in Children with Autism.

J Autism Dev Disord

January 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.

Diminished responding to one's own name is one of the strongest and earliest predictors of autism. However, research on the neural correlates of this response in autism is scarce. Here we investigate neural responses to hearing the own name in school-aged children with and without autism.

View Article and Find Full Text PDF

Measuring Bound Attention During Complex Liver Surgery Planning: Feasibility Study.

JMIR Form Res

January 2025

University Hospital for Visceral Surgery, PIUS-Hospital, Department for Human Medicine, Faculty VI, University of Oldenburg, Oldenburg, Germany.

Background: The integration of advanced technologies such as augmented reality (AR) and virtual reality (VR) into surgical procedures has garnered significant attention. However, the introduction of these innovations requires thorough evaluation in the context of human-machine interaction. Despite their potential benefits, new technologies can complicate surgical tasks and increase the cognitive load on surgeons, potentially offsetting their intended advantages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!