Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens.

Pestic Biochem Physiol

Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China. Electronic address:

Published: September 2020

Phytochemicals are toxic to insects, but their insecticidal efficiencies are usually low compared to synthetic insecticides. Understanding the mechanism of insect adaptation to phytochemicals will provide guidance for increasing their efficacy. Reduced glutathione (GSH) is a scavenger of reactive oxygen species (ROS) induced by phytochemicals. However, in insects, the pathway of GSH biosynthesis in response to phytochemicals is unclear. We found that exposure to 0.5% indole-3-methanol (I3C), xanthotoxin, and rotenone (ROT) significantly retarded the growth of Spodoptera litura larvae. The oxidative stress in S. litura larvae exposed to phytochemicals was increased. The up-regulation of glutamate cysteine ligase but not glutathione reductase revealed that the de novo synthesis pathway is responsible for GSH synthesis in phytochemical-treated larvae. Treatment with the inhibitor (BSO) of γ-glutamylcysteine synthetase (gclc), a subunit of glutamate cysteine ligase, resulted in decreases of GSH levels and GST activities, increases of ROS levels in I3C-treated larvae, which finally caused midgut necrosis and larval death. Treatment with BSO or I3C alone did not cause larval death. The addition of GSH could partly reduce the influence of I3C and BSO on S. litura growth. Nilaparvata lugens gclc RNAi confirmed the result of BSO treatment in S. litura. N. lugens gclc RNAi significantly increased the mortality of ROT-sprayed N. lugens, in which ROS levels were significantly increased. All data indicate that gclc is involved in insect response to phytochemical treatment. Treatment with dsgclc will increase the insecticidal efficacy of plant-derived compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2020.104632DOI Listing

Publication Analysis

Top Keywords

spodoptera litura
8
nilaparvata lugens
8
litura larvae
8
glutamate cysteine
8
cysteine ligase
8
ros levels
8
larval death
8
lugens gclc
8
gclc rnai
8
litura
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!