Gas Phase Dehydration of Glycerol to Acrolein Over Nickel Phosphate Catalysts.

J Nanosci Nanotechnol

School of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000, China.

Published: December 2020

We investigated the catalytic performance of glycerol conversion to acrolein on nickel phosphates samples (NiP-T ( = 300,400,500,600, and 700 °C)). The textural property, acidity of the fresh catalyst and carbon content of the used NiP-500 were also determined. The results showed that NiP was amorphous under the appropriate calcination temperature. The textural property, acid amount and strength were important in this reaction. Glycerol conversion was proportional to the acid amount of the sample. After 2 h on stream, NiP-500 with the largest pore size, largest acid amount and largest number of moderate acid sites had the maximum catalytic performance (89% glycerol conversion and 64% acrolein selectivity). NiP-700 showed the lowest performance (48% glycerol conversion and 34% acrolein selectivity), which is due to the lowest surface area, pore size and the lowest acid amount of NiP-700. Moreover, the catalyst deactivation was ascribed to carbon deposition on phosphates during the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.18873DOI Listing

Publication Analysis

Top Keywords

glycerol conversion
16
acid amount
16
acrolein nickel
8
catalytic performance
8
textural property
8
pore size
8
acrolein selectivity
8
glycerol
5
acid
5
gas phase
4

Similar Publications

The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Active Hydroxyl-Mediated Preferential Cleavage of Carbon-Carbon Bonds in Electrocatalytic Glycerol Oxidation.

Angew Chem Int Ed Engl

January 2025

Inner Mongolia University, College of Chemistry and Chemical Engineering, 235 West University Street, Saihan District, 010021, Hohhot, CHINA.

Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (NiSA) and Co single-atom (CoSA) dual sites anchored on nitrogen-doped carbon nanotubes embedded with Ni0.1Co0.

View Article and Find Full Text PDF

Glycerol, a by-product of biodiesel production through transesterification, presents an opportunity for biodiesel industries to transform surplus glycerol into high-value chemical products. This study focuses on the development of a series of propyl sulfonic acid functionalized (PrSOH) SBA-15 catalysts, synthesized by direct synthesis of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS) in an acidic medium. The catalysts were evaluated for acetylation of glycerol with acetic acid under conditions optimized through response surface methodology.

View Article and Find Full Text PDF

Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we presented an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!