Background: MicroRNAs (miRNAs) play a role in regulating osteogenic differentiation (OD) of mesenchymal stem cells by inhibiting mRNAs translation under cyclic strain. miR-503-3p was downregulated in OD of human adipose-derived stem cells (hASCs) in vivo under cyclic strain in our previous study, while it might target the Wnt/β-catenin (W-β) pathway. In this study, we explored miR-503-3p's role in OD of hASCs under cyclic strain.

Methods: OD of hASCs was induced by cyclic strain. Bioinformatic and dual luciferase analyses were used to confirm the relationship between Wnt2/Wnt7b and miR-503-3p. Immunofluorescence was used to detect the effect of miR-503-3p on Wnt2/Wnt7b and β-catenin in hASCs transfected with miR-503-3p mimic and inhibitor. Mimic, inhibitor, and small interfering RNA (siRNA) transfected in hASCs to against Wnt2 and Wnt7b. Quantitative real-time PCR (RT-PCR) and western blot were used to examine the OD and W-β pathway at the mRNA and protein levels, respectively. Immunofluorescence was performed to locate β-catenin. ALP activity and calcium were detected by colorimetric assay.

Results: Results of immunophenotypes by flow cytometry and multi-lineage potential confirmed that the cultured cells were hASCs. Results of luciferase reporter assay indicated that miR-503-3p could regulate the expression levels of Wnt2 and Wnt7b by targeting their respective 3'-untranslated region (UTR). Under cyclic strain, gain- or loss-function of miR-503-3p studies by mimic and inhibitor revealed that decreasing expression of miR-503-3p could significantly bring about promotion of OD of hASCs, whereas increased expression of miR-503-3p inhibited OD. Furthermore, miR-503-3p high-expression reduced the activity of the W-β pathway, as indicated by lowering expression of Wnt2 and Wnt7b, inactive β-catenin in miR-503-3p-treated hASCs. By contrast, miR-503-3p inhibition activated the W-β pathway.

Conclusions: Collectively, our findings indicate that miR-503-3p is a negative factor in regulating W-β pathway by Wnt2 and Wnt7b, which inhibit the OD of hASCs under cyclic strain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382842PMC
http://dx.doi.org/10.1186/s13287-020-01842-0DOI Listing

Publication Analysis

Top Keywords

cyclic strain
24
wnt2 wnt7b
20
w-β pathway
16
stem cells
12
mimic inhibitor
12
mir-503-3p
11
hascs
9
osteogenic differentiation
8
human adipose-derived
8
adipose-derived stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!