β-Glucosidases play an important role in food industry. Oenococcus oeni are typical lactic acid bacteria that initiate malolactic fermentation of wines. 35 β-glucosidases from O. oeni were selected and their conserved domains and evolutionary relationships were further explored in this study. The homology analysis results indicated that 35 β-glucosidases were basically derived from GH1 and GH3 family. A novel β-glucosidase was successfully expressed and characterized. The recombinant protein, referred to as BGL0224, consisted of a total 480 amino acids with an apparent molecular weight of 55.15 kDa and was classified as GH1 family. It achieved the highest activity at pH 5.0 and 50 °C. The activity and stability were significantly increased when 12% ethanol was supplemented to the enzyme. Using p-NPG as substrate, the K, V and K of BGL0224 were 0.34 mM, 382.81 U/mg and 351.88 s, respectively. In all, BGL0224 has good application prospects in food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127593 | DOI Listing |
Int J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia.
A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
Background: Mongolian grasslands, including the Gobi Desert, have been exposed to drought conditions with few rains. In such harsh environments, plants with highly resistant abilities against drought stress survive over long periods. We hypothesized that these plants could harbor novel and valuable genes for enhancing drought stress resistance.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, Republic of Korea.
With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!