An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy.

EBioMedicine

Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Published: August 2020

Background: Gene therapy has held promises for treating specific genetic diseases. However, the key to clinical application depends on effective gene delivery.

Methods: Using a large animal model, we developed two pharmaceutical formulations for gene delivery in the pigs' vagina, which were made up of poly (β-amino ester) (PBAE)-plasmid polyplex nanoparticles (NPs) based two gel materials, modified montmorillonite (mMMT) and hectorite (HTT).

Findings: By conducting flow cytometry of the cervical cells, we found that PBAE-GFP-NPs-mMMT gel was more efficient than PBAE-GFP-NPs-HTT gel in delivering exogenous DNA intravaginally. Next, we designed specific CRISPR/SpCas9 sgRNAs targeting porcine endogenous retroviruses (PERVs) and evaluated the genome editing efficacy in vivo. We discovered that PERV copy number in vaginal epithelium could be significantly reduced by the local delivery of the PBAE-SpCas9/sgRNA NPs-mMMT gel. Comparable genome editing results were also obtained by high-fidelity version of SpCas9, SpCas9-HF1 and eSpCas9, in the mMMT gel. Further, we confirmed that the expression of topically delivered SpCas9 was limited to the vagina/cervix and did not diffuse to nearby organs, which was relatively safe with low toxicity.

Interpretation: Our data suggested that the PBAE-NPs mMMT vaginal gel is an effective preparation for local gene therapy, yielding insights into novel therapeutic approaches to sexually transmitted disease in the genital tract.

Funding: This work was supported by the National Science and Technology Major Project of the Ministry of science and technology of China (No. 2018ZX10301402); the National Natural Science Foundation of China (81761148025, 81871473 and 81402158); Guangzhou Science and Technology Programme (No. 201704020093); National Ten Thousand Plan-Young Top Talents of China, Fundamental Research Funds for the Central Universities (17ykzd15 and 19ykyjs07); Three Big Constructions-Supercomputing Application Cultivation Projects sponsored by National Supercomputer Center In Guangzhou; the National Research FFoundation (NRF) South Africa under BRICS Multilateral Joint Call for Proposals; grant 17-54-80078 from the Russian Foundation for Basic Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387785PMC
http://dx.doi.org/10.1016/j.ebiom.2020.102897DOI Listing

Publication Analysis

Top Keywords

gene therapy
12
science technology
12
vaginal gel
8
poly β-amino
8
β-amino ester
8
genome editing
8
gel
7
gene
5
national
5
effective vaginal
4

Similar Publications

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Oncolytic therapy, inducing cell death via cell membrane lysis, holds considerable promise in cancer treatment. However, achieving precise control over the structure and function of oncolytic materials for highly selective oncolytic therapy is a key challenge in the context of the subtle differences between tumor and normal tissues/cells. Herein, we report the development of pH-ultrasensitive oncolytic polyesters (pOPs) with an alternating sequence of ionizable and hydrophobic groups.

View Article and Find Full Text PDF

Osteoarthritis: An integrative overview from pathogenesis to management.

Malays J Pathol

December 2024

Universiti Kebangsaan Malaysia, 43600 Bangi, Faculty of Medicine, Department of Pharmacology, 56000 Cheras, Kuala Lumpur, Malaysia.

Osteoarthritis (OA) is a prevalent degenerative joint disease characterised by cartilage and subchondral bone breakdown, impacting millions worldwide. This review provides an overview of the complex aetiology of OA, integrating biochemical, mechanical, and genetic factors. It also emphasises a multifaceted management approach, combining non-pharmacological, pharmacological, and surgical treatments.

View Article and Find Full Text PDF

Family Genetic Risk Communication and Reverse Cascade Testing in the BabySeq Project.

Genet Med

December 2024

Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.

Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.

Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!