AI Article Synopsis

  • Researchers are exploring polymer vectors, particularly double hydrophilic block copolymers (DHBCs), as safer alternatives to viral vectors for gene therapy, focusing on degradable options.
  • A synthesized DHBC (PEG-b-PCL(COOH)) showed effective binding with small interfering RNA (siRNA) and formed stable micelles that release siRNA in response to pH changes.
  • In vitro tests demonstrated that these tripartite PIC micelles achieved significantly higher siRNA uptake in cells compared to traditional polycation vectors, indicating their potential as non-toxic gene delivery systems.

Article Abstract

Polymer vectors for gene therapy have been largely investigated as an alternative to viral vectors. In particular, double hydrophilic block copolymers (DHBCs) have shown potential in this domain, but to date studies mainly focus on non-degradable copolymers, which may be a restriction for further development. To overcome this limitation, we synthesized a DHBC (PEG-b-PCL(COOH)) composed of a poly(ethylene glycol) (PEG) non-ionic and bioeliminable block and a degradable carboxylic acid-functionalized poly(ε-caprolactone) (PCL) block. The potential of this DHBC as an original vector for small interfering ribonucleic acids (siRNA) to formulate tripartite polyionic complex (PIC) micelles with poly(lysine) (PLL) was evaluated. We first studied the impact of the charge ratio (R) on the size and the zeta potential of the resulting micelles. With a charge ratio R = 1, one formulation with optimized physico-chemical properties showed the ability to complex 75% of siRNA. We showed a stability of the micelles at pH 7.4 and a disruption at pH 5, which allowed a pH-triggered siRNA release and proved the pH-stimuli responsive character of the tripartite micelles. In addition, the tripartite PIC micelles were shown to be non-cytotoxic below 40 µg/mL. The potential of these siRNA vectors was further evaluated in vitro: it was found that the tripartite PIC micelles allowed siRNA internalization to be 3 times higher than PLL polyplexes in murine mesenchymal stem cells, and were able to transfect human breast cancer cells. Overall, this set of data pre-validates the use of degradable DHBC as non-viral vectors for the encapsulation and the controlled release of siRNA, which may therefore constitute a sound alternative to non-degradable and/or cytotoxic polycationic vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.07.057DOI Listing

Publication Analysis

Top Keywords

pic micelles
12
double hydrophilic
8
hydrophilic block
8
block copolymers
8
tripartite polyionic
8
polyionic complex
8
small interfering
8
interfering ribonucleic
8
ribonucleic acids
8
acids sirna
8

Similar Publications

Synthesis and Characterization of Polyion Complex Micelles with Glycopolymer Shells for Drug Delivery Carriers.

Langmuir

December 2024

Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.

Double hydrophilic diblock copolymers (GA and GA), composed of non-charged poly(glycosyloxyethyl methacrylate) (PGEMA, G) and cationic poly((3-acrylamidopropyl)trimethylammonium chloride), were synthesized via reversible addition-fragementation chain transfer (RAFT) radical polymerization. Likewise, diblock copolymers (GS and GS), composed of PGEMA and anionic poly(2-acrylamido-2-methylpropanesulfonate) were synthesized via RAFT. The subscripts in these abbreviations indicate the degree of polymerization (DP) of each block.

View Article and Find Full Text PDF

Growing polyion complex micelles: kinetics and mechanism of electrostatic template polymerization and assembly.

J Colloid Interface Sci

February 2025

Department of Dermatology, Changhai Hospital, Naval Medical University, 174 Changhai Road, Shanghai 200433, People's Republic of China. Electronic address:

Hypothesis: Electrostatic-templated polymerization (ETP) is a recently developed strategy for robust fabrication of stable polyion complex (PIC) micelles with regulated size and morphology, yet the kinetics and mechanism about this one pot process remain elusive.

Experiments: In ETP method, ionic monomers are polymerized in the presence of an oppositely charged ionic-neutral diblock copolymer as template. We investigate the monomer conversion and electrostatic assembly as a function of time, under different polymerization conditions of ionic strength, pH, template/monomer molar ratio and the presence of a cross-linker.

View Article and Find Full Text PDF

Controlling the structure and functionality of porous silica nanoparticles has been a continuous source of innovation with important potential for advanced biomedical applications. Their synthesis, however, usually involves passive surfactants or amphiphilic copolymers that do not add value to the material after synthesis. In contrast, polyion complex (PIC) micelles based on hydrophilic block copolymers allow for the direct synthesis of intrinsically functional hybrid materials.

View Article and Find Full Text PDF

Preparation of Water-Soluble Polyion Complex (PIC) Micelles with pH-Responsive Carboxybetaine Block.

Macromol Rapid Commun

December 2024

Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan.

A dual zwitterionic diblock copolymer (MC) consisting of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC, M) and poly(3-((2-(methacryloyloxy)ethyl) dimethylammonio) propionate) (PCBMA, C) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. A double hydrophilic diblock copolymer (MS) consist of PMPC and anionic poly(3-sulfopropyl methacrylate potassium salt) (PMPS, S) is synthesized via RAFT. The degrees of polymerization of each block are 100.

View Article and Find Full Text PDF

Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are beneficial to maintaining the chemical integrity and high biological activity of the loaded drugs. However, the stability of PIC nanoparticles can be disrupted in high-ionic-strength solutions because electrostatic interaction is the DRIVING force; these disruptions can thus impair drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!