Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Designing electrodes with tailored architecture is an efficient mean to enhance the performance of metal-ion batteries by minimizing electronic and ionic transport limitations and increasing the fraction of active material in the electrode. However, the fabrication of architectured electrodes often involves multiple laborious steps that are not directly scalable to current manufacturing platforms. Here, we propose a processing route in which Cu-coated ZnO powders are directly shaped into architectured electrodes using a simple uniaxial pressing step. Uniaxial pressing leads to a percolating Cu phase with enhanced electrical conductivity between the active ZnO particles and improved mechanical stability, thus dispensing the use of carbon-based additives and polymeric binders in the electrode composition. The additive-free percolating copper network obtained upon pressing leads to highly loaded integrated anodes displaying volumetric charge capacity 6-10 fold higher than Cu-free ZnO films and that matches the electrochemical performance reported for advanced cathode structures. Achieving this high charge capacity using a readily available pressing tool makes this approach a promising route for the facile manufacturing of high-performance electrodes at large industrial scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382461 | PMC |
http://dx.doi.org/10.1038/s41598-020-69141-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!