Purpose: Biliary atresia (BA) is a devastating obstructive bile duct disease of newborns. BA has the highest incidence in Asians (1/5000), and its pathogenesis is unclear. We identified BA-private rare copy number variants (CNVs; 22 duplications and 6 deletions). ILF2 gene locates in the chromosome region (Chr1:153410347-153,634,058) which was deleted in a nonsyndromic BA patient. However, it is still not known whether ILF2 plays a role in hepatobiliary development and its deletion impacts on the bile duct development.
Methods: To investigate if ILF2 is required for biliary development, we knock-out the zebrafish homologs of ILF2 by CRISPR/Cas9 approach, and discover that deletion of ILF2 causes a defective biliary development and a lack of bile flow from the liver to the gall bladder in zebrafish, which is a resemblance of phenotypes of BA.
Results: Our data indicate that ILF2 gene is required for biliary development; deletion of ILF2 impairs bile duct development and could contribute to BA pathogenesis. This will be the first study to functionally evaluate the genes interfered by BA-private CNVs in hepatobiliary development and in BA pathogenesis.
Conclusions: Such functional study may reveal the potential value of these BA-private CNVs in the disease pathogenesis for BA.
Level Of Evidence: N/A (animal and laboratory study).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpedsurg.2020.06.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!