The Rtx-Dioxin2 and Rxi-17SilMS as Alternative Gas Chromatographic Confirmation Columns for Dioxin Analysis.

J Chromatogr A

Department of Biochemistry Microbiology and Molecular Biology, The Pennsylvania State University, 107 Althouse Laboratory, University Park, Pennsylvania 16802, United States. Electronic address:

Published: August 2020

Polychlorinated dibenzo-p-dioxins and furans are environmentally persistent and highly toxic compounds. 136 chlorinated dioxins and furan congeners contain at least four chlorine atoms and pose a complex separation challenge in environmental and biological matrixes. The complexity arises from the dioxin and furan molecules with substitutions at positions 2, 3, 7, and 8, which are toxicologically relevant but are not easily separated from the other non-/less toxic congeners. Many regulatory methods require the use of two columns with different polarities or selectivity for dioxin analysis. The most common confirmation column pair is a (5% phenyl)-methylpolysiloxane and a (biscyanopropyl-/ cyanopropylphenyl)-methylpolysiloxane. These phases are required in USEPA-1613 for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran specificity. However, other column phases, such as the Rxi-17SilMS and the Rtx-Dioxin2, offer alternatives to the traditional column pairing and provide a similar or better separation of 2,3,7,8-substituted congeners. This study compares four columns for dioxin analysis: the Rtx-Dioxin2, Rxi-17SilMS, Rxi-5SilMS, and Rtx-2330. All columns used in this study are capable of meeting the requirements for dioxin analysis required by USEPA-1613. However, the Rtx-Dioxin2 demonstrated improved selectivity for a wider range of dioxin compounds than the Rxi-5SilMS. The Rtx-Dioxin2 is capable of resolving 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran from common interferants better than the Rxi-5SilMS and can be used as a confirmation column with either the Rtx-2330 or Rxi-17SilMS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461263DOI Listing

Publication Analysis

Top Keywords

dioxin analysis
16
rtx-dioxin2 rxi-17silms
8
columns dioxin
8
confirmation column
8
required usepa-1613
8
2378-tetrachlorodibenzo-p-dioxin 2378-tetrachlorodibenzofuran
8
dioxin
6
rtx-dioxin2
5
rxi-17silms alternative
4
alternative gas
4

Similar Publications

Dioxin-like effects of an emerging contaminant 1,3,6,8-tetrabromocarbazole on the myogenic differentiation of mouse C2C12 cells.

Environ Res

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

1,3,6,8-Tetrabromocarbazole (1368-BCZ) has been proposed as an emerging environmental contaminant which has aryl hydrocarbon receptor (AhR) activating properties analogous to those of dioxins. Skeletal muscle development is a critical target of dioxin toxicity. However, the impact of 1368-BCZ on muscle development is inadequately understood.

View Article and Find Full Text PDF

Microplastics and Dechlorane Plus co-exposure amplifies their impacts on soybean plant.

Environ Pollut

January 2025

Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.

View Article and Find Full Text PDF

Nationwide monitoring of polychlorinated naphthalenes in soils across South Korea: Spatial distribution, source identification, and health risk assessment.

Chemosphere

December 2024

Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; UNIST Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. Electronic address:

Article Synopsis
  • The study reveals that even though the use of polychlorinated naphthalenes (PCNs) was banned long ago, they are still found in South Korean soils due to their persistence and emissions from industrial activities.
  • Industrial sites show significantly higher levels of PCNs compared to urban and suburban areas, with combustion sources being the primary contributor to contamination.
  • Monitoring data indicates that while cancer risks from PCNs are generally within acceptable limits, children are at a higher risk, suggesting the need for continued monitoring and assessment of these hazardous substances.
View Article and Find Full Text PDF

Backgrounds: Previous studies have suggested the potential links between dioxins or dioxin-like polychlorinated biphenyls (DL-PCBs) and obesity. However, the combined effects of dioxins and DL-PCBs on obesity are still unclear.

Methods: Nine kinds of dioxins and DL-PCBs were measured among 852 adults using the National Health and Nutrition Examination Survey (NHANES) from 2003-2004.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a common age-related joint disease characterized by joint destruction and impaired quality of life. Angiogenesis plays a vital role in OA progression. This study aimed to identify key angiogenesis-related genes (ARGs) in OA using transcriptomic and machine learning methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!