Natural Fiber-Stabilized Geopolymer Foams-A Review.

Materials (Basel)

Building Materials and Construction Chemistry, Department of Civil Engineering, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.

Published: July 2020

The development of sustainable, environmentally friendly insulation materials with a reduced carbon footprint is attracting increased interest. One alternative to conventional insulation materials are foamed geopolymers. Similar to foamed concrete, the mechanical properties of geopolymer foams can also be improved by using fibers for reinforcement. This paper presents an overview of the latest research findings in the field of fiber-reinforced geopolymer foam concrete with special focus on natural fibers reinforcement. Furthermore, some basic and background information of natural fibers and geopolymer foams are reported. In most of the research, foams are produced either through chemical foaming with hydrogen peroxide or aluminum powder, or through mechanical foaming which includes a foaming agent. However, previous reviews have not sufficiently addresses the fabrication of geopolymer foams by syntactic foams. Finally, recent efforts to reduce the fiber degradation in geopolymer concrete are discussed along with challenges for natural fiber reinforced-geopolymer foam concrete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412568PMC
http://dx.doi.org/10.3390/ma13143198DOI Listing

Publication Analysis

Top Keywords

geopolymer foams
12
insulation materials
8
fibers reinforcement
8
foam concrete
8
natural fibers
8
geopolymer
6
foams
5
natural
4
natural fiber-stabilized
4
fiber-stabilized geopolymer
4

Similar Publications

Geopolymer Foam with Low Thermal Conductivity Based on Industrial Waste.

Materials (Basel)

December 2024

Faculty of Materials Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland.

Geopolymer materials are increasingly being considered as an alternative to environmentally damaging concrete based on Portland cement. The presented work analyzed waste from mines and waste incineration plants as potential precursors for producing geopolymer materials that could be used to make lightweight foamed geopolymers for insulation applications. The chemical and phase composition, radioactivity properties, and leachability of selected precursors were analyzed.

View Article and Find Full Text PDF

The Effect of Oil Additives on the Properties of Fly Ash-Based Foamed Geopolymers.

Materials (Basel)

November 2024

Department of Materials Science, Lutsk National Technical University, Lvivska 75, 43018 Lutsk, Ukraine.

Geopolymers are a modern class of construction materials that show significant potential for sustainable development, especially through the use of industrial wastes such as fly ash. This study investigated the effect of different oil additives on the properties of fly ash-based geopolymers, with particular emphasis on the use of both new and used oils. Test samples were prepared using class F fly ash and a 10-molar solution of sodium hydroxide and an aqueous solution of sodium silicate.

View Article and Find Full Text PDF

The objective of this research is to fabricate waste-based alkali-activated foams with better properties in a quick time by using energy-efficient techniques such as microwave irradiation. The present study reports the effect of microwave heating parameters, including heating time and output power, on the properties of porous alkali-activated materials (AAMs) that use coal gangue (CG) as a precursor. The effects of concrete waste (CW) content (0-20 wt %) on the performance and microstructure of CG-based AAMs were investigated.

View Article and Find Full Text PDF

To reuse red mud and slag wastes as raw materials, a green type of porous spherical red mud/slag-based geopolymer (RSG) was synthesized by utilizing suspension curing and foaming techniques. Because methylene blue (MB) and nickel ion (Ni) were common and difficult to treat in wastewater, the adsorption characteristics of MB and Ni, as well as the phase and microstructure of the porous RSG spheres prior to and after adsorption, were thoroughly investigated. The porous RSG spheres showed a stable and mesoporous structure with a BET surface area of 31.

View Article and Find Full Text PDF

The purpose of this study was to analyze the effects of phase-change components on the properties of geopolymer foams. Geopolymer foams are lightweight foamed geopolymers that are characterized by a high degree of porosity. Phase change materials, on the other hand, are compounds that, when added to a material, allow it to absorb, store, and then release large amounts of energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!