LC-MS Lipidomics: Exploiting a Simple High-Throughput Method for the Comprehensive Extraction of Lipids in a Ruminant Fat Dose-Response Study.

Metabolites

NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Pathology Building Level 4, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.

Published: July 2020

Typical lipidomics methods incorporate a liquid-liquid extraction with LC-MS quantitation; however, the classic sample extraction methods are not high-throughput and do not perform well at extracting the full range of lipids especially, the relatively polar species (e.g., acyl-carnitines and glycosphingolipids). In this manuscript, we present a novel sample extraction protocol, which produces a single phase supernatant suitable for high-throughput applications that offers greater performance in extracting lipids across the full spectrum of species. We applied this lipidomics pipeline to a ruminant fat dose-response study to initially compare and validate the different extraction protocols but also to investigate complex lipid biomarkers of ruminant fat intake (adjoining onto simple odd chain fatty acid correlations). We have found 100 lipids species with a strong correlation with ruminant fat intake. This novel sample extraction along with the LC-MS pipeline have shown to be sensitive, robust and hugely informative (>450 lipids species semi-quantified): with a sample preparation throughput of over 100 tissue samples per day and an estimated ~1000 biological fluid samples per day. Thus, this work facilitating both the epidemiological involvement of ruminant fat, research into odd chain lipids and also streamlining the field of lipidomics (both by sample preparation methods and data presentation).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407148PMC
http://dx.doi.org/10.3390/metabo10070296DOI Listing

Publication Analysis

Top Keywords

ruminant fat
20
sample extraction
12
fat dose-response
8
dose-response study
8
extraction lc-ms
8
novel sample
8
fat intake
8
odd chain
8
lipids species
8
sample preparation
8

Similar Publications

Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.

Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.

View Article and Find Full Text PDF

Background: Obtaining information about the growth rates of animals' organs and tissues can help understand their meat production potential and determine the ideal slaughter weight (SW).

Objectives: This study aimed to determine the effects of production system and SW on the allometric growth of the non-carcass components, carcass cuts, and hind limb tissues of Kivircik lambs.

Methods: A total of 54 single-born male lambs were randomly allocated into production systems (concentrate- and pasture-based) and SW groups: 25-26 kg (LOW), 30-31 kg (MEDIUM), and 35-36 kg (HIGH).

View Article and Find Full Text PDF

Phosphate has been widely used in beef to improve processing characteristics such as tenderness and water-holding capacity. However, the effects of phosphates on the quality and especially the flavor of beef are not well understood. This study investigated the influence of eight different phosphate marinade solutions on the quality and flavor of prepared beef.

View Article and Find Full Text PDF

This study determined the interaction between soybean hulls (SHs) and enzymes (β-mannanase) to improve the sustainability and efficacy of feeding programs for laying hens during peak production while ensuring the best health and efficiency. In a completely randomized design (CRD), 200 golden-brown hens were fed for four weeks (33 to 36 weeks) and randomly distributed into four groups, each containing four replicates of ten birds, with one group receiving a control diet (P0) and the others receiving diets that contained four combinations of SHs and enzymes (ENZs). e.

View Article and Find Full Text PDF

Pregnant ewes mobilize body fat to increase energy supply for fetal growth and development upon undernutrition, which disrupts the metabolic homeostasis of the body. However, the comprehensive metabolic changes in subcutaneous adipose tissue upon undernutrition are poorly understood. In this study, an undernutrition sheep model was established to investigate the effects of undernutrition on metabolic changes, immune response, and inflammation in subcutaneous fat through transcriptome, RT-qPCR, and metabolome analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!