An Improved Passivity-based Control of Electrostatic MEMS Device.

Micromachines (Basel)

Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan.

Published: July 2020

It is commonly known that the performance of an electrostatic microelectromechanical system (MEMS) device is limited to a specific range of the full gap distance due to the inherited "pull-in instability" phenomenon. In this work, we design a controller to extend the stabilization range of an electrostatic MEMS device and to enhance its performance. The interconnection and damping assignment-passivity based control (IDA-PBC) method is used and the controller design involves coordinate transformations and a coupling between the mechanical and electrical subsystems of the device. The method deploys a design of a speed observer to estimate the speed, which cannot be directly measured by sensors. The effectiveness of the dynamical controller is verified via numerical simulations; it is evident by the extended travel range of the parallel plates as well as the improved performance of the plates, even with a naturally lighter damping ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408588PMC
http://dx.doi.org/10.3390/mi11070688DOI Listing

Publication Analysis

Top Keywords

mems device
12
electrostatic mems
8
improved passivity-based
4
passivity-based control
4
control electrostatic
4
device
4
device commonly
4
commonly performance
4
performance electrostatic
4
electrostatic microelectromechanical
4

Similar Publications

This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.

View Article and Find Full Text PDF

Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN/metal interfaces.

Nanoscale Horiz

January 2025

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.

View Article and Find Full Text PDF

With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip's size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component.

View Article and Find Full Text PDF

High-sensitivity, high-speed, broadband mid-infrared photodetector enabled by a van der Waals heterostructure with a vertical transport channel.

Nat Commun

January 2025

School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, and Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.

The realization of room-temperature-operated, high-performance, miniaturized, low-power-consumption and Complementary Metal-Oxide-Semiconductor (CMOS)-compatible mid-infrared photodetectors is highly desirable for next-generation optoelectronic applications, but has thus far remained an outstanding challenge using conventional materials. Two-dimensional (2D) heterostructures provide an alternative path toward this goal, yet despite continued efforts, their performance has not matched that of low-temperature HgCdTe photodetectors. Here, we push the detectivity and response speed of a 2D heterostructure-based mid-infrared photodetector to be comparable to, and even superior to, commercial cooled HgCdTe photodetectors by utilizing a vertical transport channel (graphene/black phosphorus/molybdenum disulfide/graphene).

View Article and Find Full Text PDF

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!