Designing a Cyber-Physical System for Ambient Assisted Living: A Use-Case Analysis for Social Robot Navigation in Caregiving Centers.

Sensors (Basel)

Laboratory of Robotics and Artificial Vision, Department of Computer and Communication Technology, University of Extremadura, 10003 Cáceres, Spain.

Published: July 2020

The advances of the Internet of Things, robotics, and Artificial Intelligence, to give just a few examples, allow us to imagine promising results in the development of smart buildings in the near future. In the particular case of elderly care, there are new solutions that integrate systems that monitor variables associated with the health of each user or systems that facilitate physical or cognitive rehabilitation. In all these solutions, it is clear that these new environments, usually called Ambient Assisted Living (AAL), configure a Cyber-Physical System (CPS) that connects information from the physical world to the cyber-world with the primary objective of adding more intelligence to these environments. This article presents a CPS-AAL for caregiving centers, with the main novelty that includes a Socially Assistive Robot (SAR). The CPS-AAL presented in this work uses a digital twin world with the information acquired by all devices. The basis of this digital twin world is the CORTEX cognitive architecture, a set of software agents interacting through a Deep State Representation (DSR) that stored the shared information between them. The proposal is evaluated in a simulated environment with two use cases requiring interaction between the sensors and the SAR in a simulated caregiving center.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412398PMC
http://dx.doi.org/10.3390/s20144005DOI Listing

Publication Analysis

Top Keywords

cyber-physical system
8
ambient assisted
8
assisted living
8
caregiving centers
8
digital twin
8
designing cyber-physical
4
system ambient
4
living use-case
4
use-case analysis
4
analysis social
4

Similar Publications

Automated polynomial formal verification using generalized binary decision diagram patterns.

Philos Trans A Math Phys Eng Sci

January 2025

Institute of Computer Science, University of Bremen, Bremen, Germany.

With the ongoing digitization, digital circuits have become increasingly present in everyday life. However, as circuits can be faulty, their verification poses a challenging but essential challenge. In contrast to formal verification techniques, simulation techniques fail to fully guarantee the correctness of a circuit.

View Article and Find Full Text PDF

This dataset is generated from real-time simulations conducted in MATLAB/Simscape, focusing on the impact of smart noise signals on battery energy storage systems (BESS). Using Deep Reinforcement Learning (DRL) agent known as Proximal Policy Optimization (PPO), noise signals in the form of subtle millivolt and milliampere variations are strategically created to represent realistic cases of False Data Injection Attacks (FDIA). These signals are designed to disrupt the State of Charge (SoC) and State of Health (SoH) estimation blocks within Unscented Kalman Filters (UKF).

View Article and Find Full Text PDF

Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI).

View Article and Find Full Text PDF

Cybersecurity Solutions for Industrial Internet of Things-Edge Computing Integration: Challenges, Threats, and Future Directions.

Sensors (Basel)

January 2025

Department of Computer Science and Engineering, Yanbu Industrial College, Royal Commission for Jubail and Yanbu, Yanbu Industrial City 41912, Saudi Arabia.

This paper provides the complete details of current challenges and solutions in the cybersecurity of cyber-physical systems (CPS) within the context of the IIoT and its integration with edge computing (IIoT-edge computing). We systematically collected and analyzed the relevant literature from the past five years, applying a rigorous methodology to identify key sources. Our study highlights the prevalent IIoT layer attacks, common intrusion methods, and critical threats facing IIoT-edge computing environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!