In Vitro Evaluation of Lipopolyplexes for Gene Transfection: Comparing 2D, 3D and Microdroplet-Enabled Cell Culture.

Molecules

International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal.

Published: July 2020

Complexes combining nucleic acids with lipids and polymers (lipopolyplexes) show great promise for gene therapy since they enable compositional, physical and functional versatility to be optimized for therapeutic efficiency. When developing lipopolyplexes for gene delivery, one of the first evaluations performed is an in vitro transfection efficiency experiment. Many different in vitro models can be used, and the effect of the model on the experiment outcome has not been thoroughly studied. The objective of this work was to compare the insights obtained from three different in vitro models, as well as the potential limitations associated with each of them. We have prepared a series of lipopolyplex formulations with three different cationic polymers (poly-l-lysine, bioreducible poly-l-lysine and polyethyleneimine), and assessed their in vitro biological performance in 2D monolayer cell culture, 3D spheroid culture and microdroplet-based single-cell culture. Lipopolyplexes from different polymers presented varying degrees of transfection efficiency in all models. The best-performing formulation in 2D culture was the polyethyleneimine lipopolyplex, while lipoplexes prepared with bioreducible poly-l-lysine were the only ones achieving any transfection in microdroplet-enabled cell culture. None of the prepared formulations achieved significant gene transfection in 3D culture. All of the prepared formulations were well tolerated by cells in 2D culture, while at least one formulation (poly-l-lysine polyplex) delayed 3D spheroid growth. These results highlight the need for selecting the appropriate in vitro model depending on the intended application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397275PMC
http://dx.doi.org/10.3390/molecules25143277DOI Listing

Publication Analysis

Top Keywords

cell culture
12
lipopolyplexes gene
8
gene transfection
8
microdroplet-enabled cell
8
culture
8
transfection efficiency
8
vitro models
8
bioreducible poly-l-lysine
8
culture prepared
8
prepared formulations
8

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.

View Article and Find Full Text PDF

Militarine is a monomer molecule with abundant and distinctive biological properties, also the lead member of secondary metabolites in Bletilla striata, while its biosynthesis mechanism is still unknown. To improve the production efficiency of militarine, sodium acetate and salicylic acid (SA) were introduced as elicitors into the suspension-cultured callus of B. striata.

View Article and Find Full Text PDF

In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!