The electrochemical response of multilayer epitaxial graphene electrodes on silicon carbide substrates was studied for use as an electrochemical sensor for seawater samples spiked with environmental contaminants using cyclic square wave voltammetry. Results indicate that these graphene working electrodes are more robust and have lower background current than either screen-printed carbon or edge-plane graphite in seawater. Identification algorithms developed using machine learning techniques are described for several heavy metals, herbicides, pesticides, and industrial compounds. Dose-response curves provide a basis for quantitative analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412216 | PMC |
http://dx.doi.org/10.3390/s20144006 | DOI Listing |
Micron
December 2024
Department of Materials Science and Engineering, Stanford University, Stanford 94305, USA. Electronic address:
Atomic scale, scanning transmission electron microscopy (STEM) analysis of the moiré structures in twisted epitaxial gold nanodiscs encapsulated in twisted bilayer molybdenum disulfide is presented. High angle annular dark field STEM imaging reveals that the period of the moiré patterns between gold and molybdenum disulfide varies with different twist angles of the bilayer molybdenum disulfide, ranging from 1.80 nm (epitaxial alignment of gold) to 1.
View Article and Find Full Text PDFMicron
December 2024
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Graphene's exceptional physical properties, such as high thermal conductivity and mechanical strength, have attracted significant interest for its integration in transistors and thermal interface materials. While achieving various conformations of graphene is desirable for such applications, synthesizing graphene with target conformations remains a challenge. In this work, we present a method for synthesizing multilayer graphene with ridged conformations, using a microscale ridge-patterned copper (Cu) layer that was epitaxially deposited on a sapphire substrate.
View Article and Find Full Text PDFACS Nano
December 2024
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.
An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.
View Article and Find Full Text PDFNano Lett
December 2024
Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China.
With a nontrivial topological band and intrinsic magnetic order, two-dimensional (2D) MnBiTe-family materials exhibit great promise for exploring exotic quantum phenomena and potential applications. However, the synthesis of 2D MnBiTe-family materials via chemical vapor deposition (CVD), which is essential for advancing device applications, still remains a significant challenge since it is difficult to control the reactions among multi-precursors and form pure phases. Here, we report a controllable synthesis of high-quality magnetic topological insulator MnBiTe and MnBiTe multilayers via an evaporation-rate-controlled CVD approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
The catalytic conversion of CO to CO through hydrogenation has emerged as a promising strategy for CO utilization, given that CO serves as a valuable C1 platform compound for synthesizing liquid fuels and chemicals. However, the predominant formation of CH via deep hydrogenation over Ru-based catalysts poses challenges in achieving selective CO production. High reaction temperatures often lead to catalyst deactivation and changes in selectivity due to dynamic metal evolution or agglomeration, even with a classic strong metal-support interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!