Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB activation have the potential to prevent and treat cancer. However, the mechanism by which Calebin A, a component of turmeric, regulates inflammation and disrupts the interaction between HCT116 colorectal cancer (CRC) cells and multicellular tumor microenvironment (TME) is still poorly understood. The 3D-alginate HCT116 cell cultures in TME were treated with Calebin A, BMS-345541, and dithiothreitol (DTT) and examined for invasiveness, proliferation, and apoptosis. The mechanism of TME-induced malignancy of cancer cells was confirmed by phase contrast, Western blotting, immunofluorescence, and DNA-binding assay. We found through DNA binding assay, that Calebin A inhibited TME-induced NF-κB activation in a dose-dependent manner. As a result of this inhibition, NF-κB phosphorylation and NF-κB nuclear translocation were down-modulated. Calebin A, or IκB-kinase (IKK) inhibitor (BMS-345541) significantly inhibited the direct interaction of nuclear p65 to DNA, and interestingly this interaction was reversed by DTT. Calebin A also suppressed the expression of NF-κB-promoted anti-apoptotic (Bcl-2, Bcl-xL, survivin), proliferation (Cyclin D1), invasion (MMP-9), metastasis (CXCR4), and down-regulated apoptosis (Caspase-3) gene biomarkers, leading to apoptosis in HCT116 cells. These results suggest that Calebin A can suppress multicellular TME-promoted CRC cell invasion and malignancy by inhibiting the NF-κB-promoting inflammatory pathway associated with carcinogenesis, underlining the potential of Calebin A for CRC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460490 | PMC |
http://dx.doi.org/10.3390/biomedicines8080236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!