Brain inflammation is a key event triggering the pathological process associated with many neurodegenerative diseases. Current personalized medicine and translational research in neurodegenerative diseases focus on adipose-derived stem cells (ASCs), because they are patient-specific, thereby reducing the risk of immune rejection. ASCs have been shown to exert a therapeutic effect following transplantation in animal models of neuroinflammation. However, the mechanisms by which transplanted ASCs promote cell survival and/or functional recovery are not fully understood. We investigated the effects of ASCs in in vivo and in vitro lipopolysaccharide (LPS)-induced neuroinflammatory models. Brain damage was evaluated immunohistochemically using specific antibody markers of microglia, astroglia and oligodendrocytes. ASCs were used for intracerebral transplantation, as well as for non-contact co-culture with brain slices. In both in vivo and in vitro models, we found that LPS caused micro- and astroglial activation and oligodendrocyte degradation, whereas the presence of ASCs significantly reduced the damaging effects. It should be noted that the observed ASCs protection in a non-contact co-culture suggested that this effect was due to humoral factors via ASC-released biomodulatory molecules. However, further clinical studies are required to establish the therapeutic mechanisms of ASCs, and optimize their use as a part of a personalized medicine strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563866PMC
http://dx.doi.org/10.3390/jpm10030066DOI Listing

Publication Analysis

Top Keywords

adipose-derived stem
8
stem cells
8
neurodegenerative diseases
8
personalized medicine
8
ascs
8
vivo vitro
8
non-contact co-culture
8
cells reduce
4
reduce lipopolysaccharide-induced
4
lipopolysaccharide-induced myelin
4

Similar Publications

Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.

View Article and Find Full Text PDF

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.

View Article and Find Full Text PDF

Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach.

Sci Rep

December 2024

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.

View Article and Find Full Text PDF

Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!