Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463699PMC
http://dx.doi.org/10.3390/biom10081089DOI Listing

Publication Analysis

Top Keywords

cell rear
12
quantitative phase
8
phase imaging
8
role focal
8
focal adhesion
8
adhesion kinase
8
cell
8
front-rear polarity
8
cell mass
8
fak-depleted cells
8

Similar Publications

The order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, , and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly (Phoridae) has been used in evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a chromosome-level assembly and annotation of and transcriptomes of 9 embryonic and 4 postembryonic stages.

View Article and Find Full Text PDF

Morphological Comparisons of Adult Worker Bees Developed in Chinese and Italian Honey Bee Combs.

Insects

January 2025

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

The size of comb cells is a key factor influencing the body size of honey bee workers. Comb cells and the body size of Chinese honey bee workers are smaller than those of Italian honey bee workers. To increase the size of Chinese honey bee workers, this study used newly built combs from Chinese honey bee colonies (control group) and Italian honey bee colonies (treatment group).

View Article and Find Full Text PDF

Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage.  However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction.

View Article and Find Full Text PDF

Correlative Raman-Voltage Microscopy Revealing the Localized Structure-Stress Relationship in Silicon Solar Cells.

ACS Nano

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.

Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.

View Article and Find Full Text PDF

A rear emitter with a p-type boron-doped hydrogenated amorphous silicon/nanocrystalline silicon [a-Si:H(p)/nc-Si:H(p)] stack was prepared for the silicon heterojunction (SHJ) solar cell to improve its short-circuit current density (). CO plasma treatment (CO PT) was applied to a-Si:H(p) to facilitate the crystallization of the subsequently deposited nc-Si:H(p). To evaluate the effect of the CO PT, two different nc-Si:H(p) layers with low and high crystallinity (χ) were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!