A broadly protective and biosafe vaccine against foot-and-mouth disease virus (FMDV) remains an unmet need in the animal health sector. We have previously reported solid protection against serotype O FMDV afforded by dendrimeric peptide structures harboring virus-specific B- and T-cell epitopes, and also shown such type of multivalent presentations to be advantageous over simple B-T-epitope linear juxtaposition. Chemically, our vaccine platforms are modular constructions readily made from specified B- and T-cell epitope precursor peptides that are conjugated in solution. With the aim of developing an improved version of our formulations to be used for on-demand vaccine applications, we evaluate in this study a novel design for epitope presentation to the immune system based on a multiple antigen peptide (MAP) containing six immunologically relevant motifs arranged in dendrimeric fashion (named BT-TB). Interestingly, two BT units fused tail-to-tail into a single homodimer platform elicited higher B- and T-cell specific responses than former candidates, with immunization scores remaining stable even after 4 months. Moreover, this macromolecular assembly shows consistent immune response in swine, the natural FMDV host, at reduced dose. Thus, our versatile, immunogenic prototype can find application in the development of peptide-based vaccine candidates for various therapeutic uses using safer and more efficacious vaccination regimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565419PMC
http://dx.doi.org/10.3390/vaccines8030406DOI Listing

Publication Analysis

Top Keywords

foot-and-mouth disease
8
disease virus
8
designing functionally
4
functionally versatile
4
versatile highly
4
highly immunogenic
4
immunogenic peptide-based
4
peptide-based multiepitopic
4
multiepitopic vaccines
4
vaccines foot-and-mouth
4

Similar Publications

A fatal case of enterovirus A71-induced meningoencephalitis following allogenic hematopoietic stem cell transplantation.

J Infect Chemother

January 2025

Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Enterovirus A71 (EV-A71) is a major pathogen responsible for hand, foot, and mouth disease (HFMD) in infants and children. EV-A71 infection represents an epidemic in the Asia-Pacific region, and can cause serious central nervous system (CNS) infections in immunocompromised patients that can result in paralysis, disability, or death. There have been few reports in the literature concerning EV-A71 CNS infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult patients.

View Article and Find Full Text PDF

Sheeppox and Goatpox are highly contagious transboundary viral diseases of sheep and goats caused by Capripoxvirus, respectively. This study describes the development of indirect ELISA and its serodiagnostic potential as an alternative to the gold standard serum neutralization test (SNT). The homologue of vaccinia virus, ORF 117 (A27L) gene of the Romanian Fenner (RF) strain of Sheeppox virus (SPPV) was used for producing the full-length recombinant A27L (rA27L) protein (∼22 kDa) in a prokaryotic expression system.

View Article and Find Full Text PDF

Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications.

Drug Des Devel Ther

January 2025

Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People's Republic of China.

Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration.

View Article and Find Full Text PDF

Inhibition of Neutral Sphingomyelinase-2 restrains Enterovirus 71 Infection by Autophagy.

Microb Pathog

January 2025

Department of Laboratory Medicine, Suzhou Mental Health Center, the Affiliated Guangji Hospital of Soochow University, Suzhou215137, Jiangsu, China.

Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection.

View Article and Find Full Text PDF

Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!