Polymer composites with enhanced thermal and dielectric properties can be widely used in electric and energy related applications. In this work, epoxy composites have been prepared with TiCT, one of the most studied MXene materials that can be massively produced by direct etching using hydrofluoric acid. The addition of conductive two dimensional TiCT platelet fillers leads to improved but anisotropic thermal conductivity of the composites. The through-plane thermal conductivity reaches 0.583 WmK and the in-plane thermal conductivity reaches 1.29 WmK when filler content is 40 wt% (21.3 vol%), achieving enhancements of 2.92 times and 10.65 times respectively, as compared with epoxy matrix. The dielectric permittivity of epoxy composite is enhanced by a factor of ~2.25 with 40 wt% fillers, and the dielectric losses are within a small value of 0.02. The results prove the effectiveness of TiCT in simultaneously improving thermal and dielectric performance of epoxy composites, and it is deduced that further improvements may be obtained by using TiCT nanoflake fillers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408071 | PMC |
http://dx.doi.org/10.3390/polym12071608 | DOI Listing |
Mater Horiz
January 2025
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
As the demand for high-power-density microelectronics rises, overheating becomes the bottleneck that limits device performance. In particular, the heterogeneous integration architecture can magnify the importance of heat dissipation and necessitate electrical insulation between critical junctions to prevent dielectric breakdown. Consequently, there is an urgent need for thermal interface materials (TIMs) with high thermal conductivity and electrical insulation to address this challenge.
View Article and Find Full Text PDFNano Lett
January 2025
Key Lab for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.
One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Physics, Central South University, Changsha 410083, China.
Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials.
View Article and Find Full Text PDFSci Rep
January 2025
Accelerator Operations and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.
The pursuit to operate photocathodes at high accelerating gradients to increase brightness of electron beams is gaining interests within the accelerator community, particularly for applications such as free electron lasers (FEL) and compact accelerators. Cesium telluride (CsTe) is a widely used photocathode material and it is presumed to offer resilience to higher gradients because of its wider band gap compared to other semiconductors. Despite its advantages, crucial material properties of CsTe remain largely unknown both in theory and experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!