Neuro-inflammation is responsible for cognitive impairments and neurodegenerative diseases such as Alzheimer's disease. In this study, we aimed to investigate the enriched environment (EE) effect on learning and memory impairment as well as on pro-inflammatory cytokines changes induced by lipopolysaccharide (LPS). LPS injection (1 mg/kg/i.p, days 1, 3, 5, and 7) was used to develop the animal model of neuro-inflammation. Twenty-eight male Wistar rats were used in the experiment and randomly divided into 4 groups: 1) sham (S), 2) sham + enriched environment (SE), 3) LPS (L), and 4) LPS + EE (LE). Two different housing conditions, including standard environment (SE) and enriched environment, were used. The Morris Water Maze (MWM) test was used to examine animals learning and memory. IL-1β, IL-10, and TNF-α levels were measured in the brain using ELISA. We found that LPS significantly impaired learning and memory (p < 0.05) in the MWM task, but EE could significantly improve learning and memory impairment (p < 0.05). IL-1 and IL-10 levels dramatically increased in the LPS group (P < 0.05), whereas EE could decrease and increase IL-1β and IL-10 values in the LPS + EE group (P < 0.05), respectively. TNF-α levels were traced but had not detectable values in the hippocampus. Thus, we can conclude that EE has healing effects on LPS induced neuro-inflammation and can improve learning and memory deficit; however, further studies are needed to support the findings of our study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2020.112814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!