It is urgent to understand the regulatory mechanism of drug resistance in widespread bacterial pathogens. In Mycobacterium tuberculosis, several transcriptional regulators have been found to play essential roles in regulating its drug resistance. In this study, we found that an ArsR family transcription regulator encoded by Rv2642 (CdiR) responds to isoniazid (INH), a widely used anti-tuberculosis (TB) drug. CdiR negatively regulates self and adjacent genes, including arsC (arsenic-transport integral membrane protein ArsC). CdiR directly interacts with INH and Cd(II). The binding of INH and Cd(II) both reduce its DNA-binding activity. Disrupting cdiR increased the drug susceptibility to INH, whereas overexpressing cdiR decreased the susceptibility. Strikingly, overexpressing arsC increased the drug susceptibility as well as cdiR. Additionally, both changes in cdiR and arsC expression caused sensitivity to other drugs such as rifamycin and ethambutol, where the minimal inhibitory concentrations in the cdiR deletion strain were equal to those of the arsC-overexpressing strain, suggesting that the function of CdiR in regulating drug resistance primarily depends on arsC. Furthermore, we found that Cd(II) enhances bacterial resistance to INH in a CdiR-dependent manner. As a conclusion, CdiR has a critical role in directing the interplay between Cd(II) metal ions and drug susceptibility in mycobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvaa086DOI Listing

Publication Analysis

Top Keywords

drug susceptibility
16
drug resistance
12
cdir
10
drug
8
susceptibility mycobacteria
8
regulating drug
8
inh cdii
8
increased drug
8
susceptibility
5
inh
5

Similar Publications

Isolate Specific Transcriptome Changes Exerted by Isavuconazole Treatment in Candida auris.

Mycopathologia

December 2024

Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary.

The sudden emergence of multidrug- and pan-resistant Candida auris isolates, combined with limited treatment options, poses significant global challenges in healthcare settings. Combination based therapies are promising alternative options to overcome C. auris related infections, where echinocandin and isavuconazole (ISA) combinations may be an interesting and promising approach.

View Article and Find Full Text PDF

Pythiosis, a rare and formidable infectious disease caused by , is characterized by profound uncertainties in achieving definitive diagnoses, suboptimal outcomes, and an exceptionally high mortality rate. Here, we present a rare case of human spinal pythiosis in southern China. With advanced metagenomic sequencing technology, was pinpointed as the causative pathogen.

View Article and Find Full Text PDF

Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment.

View Article and Find Full Text PDF

Objective: To explore the association between smoking, genetic susceptibility and early menopause (EM) and clarify the potential mechanisms underlying this relationship.

Design: An observational and Transcriptome-wide association analysis (TWAS) study.

Setting: UK Biobank and public summary statistics.

View Article and Find Full Text PDF

The scarcity of donors has prompted the growing utilization of steatotic livers, which are susceptible to injuries following orthotopic liver transplantation (OLT). This study aims to assess the efficacy of multidrug donor preconditioning (MDDP) in alleviating injuries of steatotic grafts following rat OLT. Lean rats were subjected to a Western-style diet with high-fat (HF) and high-fructose (HFr) for 30 days to induce steatosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!