Fluorescence nucleobase analogue-based strategy with high signal-to-noise ratio for ultrasensitive detection of food poisoning bacteria.

Analyst

Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.

Published: September 2020

We developed a simple and ultrasensitive strategy for the identification of foodborne pathogens utilizing a fluorescent nucleobase analogue [2-aminopurine (2-AP)]-containing split G-quadruplex that binds blocker DNA. Compared to a previous strategy that did not use blocker DNA, this strategy showed a significant increase in the signal-to-noise ratio-by approximately 300%-owing to the displacement of the blocker DNA by the target DNA that induces the formation of an active G-quadruplex structure, thereby leading to a substantial increase in the 2-AP fluorescence signal. The proposed strategy was rationally combined with polymerase chain reaction, which resulted in the successful determination of genomic DNA (within the range of 10-106 copies) derived from the food poisoning bacterium Escherichia coli, with a limit of detection of 5.2 copies and high selectivity. In addition, the practical applicability of this method was demonstrated by analyzing E. coli-spiked lettuce samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0an01026jDOI Listing

Publication Analysis

Top Keywords

blocker dna
12
food poisoning
8
strategy
5
dna
5
fluorescence nucleobase
4
nucleobase analogue-based
4
analogue-based strategy
4
strategy high
4
high signal-to-noise
4
signal-to-noise ratio
4

Similar Publications

As a diverse and complex food matrix, the animal food microbiota and repertoire of antimicrobial resistance (AMR) genes remain to be better understood. In this study, 16S rRNA gene amplicon sequencing and shotgun metagenomics were applied to three types of animal food samples (cattle feed, dry dog food, and poultry feed). ZymoBIOMICS mock microbial community was used for workflow optimization including DNA extraction kits and bead-beating conditions.

View Article and Find Full Text PDF

Accurate Molecular Sensing based on a Modular and Customizable CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON).

Angew Chem Int Ed Engl

January 2025

State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.

Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator.

View Article and Find Full Text PDF

S-Sulfocysteine (SSC) is a metabolite derived from the metabolism of sulfur-containing amino acids. It has been implicated in neurotoxicity observed in children with sulfite oxidase deficiency. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity.

View Article and Find Full Text PDF

Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N)] (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!