White matter (WM) disease is associated with disruption of the gliovascular unit, which involves breach of the blood-brain barrier (BBB). We quantified pericytes as components of the gliovascular unit and assessed their status in vascular and other common dementias. Immunohistochemical and immunofluorescent methods were developed to assess the distribution and quantification of pericytes connected to the frontal lobe WM capillaries. Pericytes with a nucleus were identified by collagen 4 (COL4) and platelet-derived growth factor receptor-β (PDGFR-β) antibodies with further verification using PDGFR-β-specific ELISA. We evaluated a total of 124 post-mortem brains from subjects with post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD), AD-VaD (Mixed) and post-stroke non-demented (PSND) stroke survivors as well as normal aging controls. COL4 and PDGFR-β reactive pericytes adopted the characteristic "crescent" or nodule-like shapes around capillary walls. We estimated densities of pericyte somata to be 225 ±38 and 200 ±13 (SEM) per COL4 mm area or 2.0 ± 0.1 and 1.7 ± 0.1 per mm capillary length in young and older aging controls. Remarkably, WM pericytes were reduced by ~35%-45% in the frontal lobe of PSD, VaD, Mixed and AD subjects compared to PSND and controls subjects (P < 0.001). We also found pericyte numbers were correlated with PDGFR-β reactivity in the WM. Our results first demonstrate a reliable method to quantify COL4-positive pericytes and then, indicate that deep WM pericytes are decreased across different dementias including PSD, VaD, Mixed and AD. Our findings suggest that downregulation of pericytes is associated with the disruption of the BBB in the deep WM in several aging-related dementias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018063 | PMC |
http://dx.doi.org/10.1111/bpa.12888 | DOI Listing |
J Prev Alzheimers Dis
February 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore. Electronic address:
Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea. Electronic address:
Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE.
View Article and Find Full Text PDFLancet Neurol
January 2025
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. Electronic address:
The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics.
View Article and Find Full Text PDFLancet Neurol
January 2025
Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!