The Nm23 metastasis suppressor family is involved in a variety of physiological and pathological processes including cell proliferation, differentiation, tumorigenesis, and metastasis. Given that Nm23 proteins may function as hexamers composed of different members of the family, especially Nm23-H1 and H2 isoforms, it is pertinent to assess the importance of interface and surface residues in defining the functional characteristics of Nm23 proteins. Using molecular modeling to identify clusters of residues that may affect dimer formation and isoform specificity, mutants of Nm23-H1 were constructed and assayed for their ability to modulate cell migration. Mutations of dimer interface residues Gly and Lys affected the expression level of Nm23-H1, without altering the transcript level. The reduced protein expression was not due to increased protein degradation or altered subcellular distribution. Substitution of the surface residues of Nm23-H1 with Nm23-H2-specific Ser and/or Lys affected the electrophoretic mobility of the protein. Moreover, in cell migration assays, several mutants with altered surface residues exhibited impaired ability to suppress the mobility of MDA-MB-231 cells. Collectively, the study suggests that disrupting the dimer interface may affect the expression of Nm23-H1, while the residues at α-helix and β-sheet on the surface of Nm23-H1 may contribute to its metastasis suppressive function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-020-03836-1DOI Listing

Publication Analysis

Top Keywords

surface residues
16
dimer interface
12
mutations dimer
8
interface surface
8
residues nm23-h1
8
metastasis suppressor
8
affect expression
8
nm23 proteins
8
cell migration
8
residues
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!