Introduction: Multivalent antimicrobial dendrimers are an exciting new system that is being developed to address the growing problem of drug resistant bacteria. Nuclear Magnetic Resonance (NMR) metabolomics is a quantitative and reproducible method for the determination of bacterial response to environmental stressors and for visualization of perturbations to biochemical pathways.
Objectives: NMR metabolomics is used to elucidate metabolite differences between wild type and antimicrobially mutated Escherichia coli (E. coli) samples.
Methods: Proton (H) NMR hydrophilic metabolite analysis was conducted on samples of E. coli after 33 growth cycles of a minimum inhibitory challenge to E. coli by poly(amidoamine) dendrimers functionalized with mannose and with C-DABCO quaternary ammonium endgroups and compared to the metabolic profile of wild type E. coli.
Results: The wild type and mutated E. coli samples were separated into distinct sample sets by hierarchical clustering, principal component analysis (PCA) and sparse partial least squares discriminate analysis (sPLS-DA). Metabolite components of membrane fortification and energy related pathways had a significant p value and fold change between the wild type and mutated E. coli. Amino acids commonly associated with membrane fortification from cationic antimicrobials, such as lysine, were found to have a higher concentration in the mutated E. coli than in the wild type E. coli. N-acetylglucosamine, a major component of peptidoglycan synthesis, was found to have a 25-fold higher concentration in the mid log phase of the mutated E. coli than in the mid log phase of the wild type.
Conclusion: The metabolic profile suggests that E. coli change their peptidoglycan composition in order to garner protection from the highly positively charged and multivalent C-DABCO and mannose functionalized dendrimer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389846 | PMC |
http://dx.doi.org/10.1007/s11306-020-01702-1 | DOI Listing |
Nat Chem Biol
January 2025
Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFCell Death Discov
January 2025
Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.
View Article and Find Full Text PDFMed Mycol
January 2025
Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
This study was performed to evaluate whether the MIC Test Strip (MTS) quantitative assay for determining the minimum inhibitory concentration (MIC) correlated with the CLSI reference broth microdilution method (BMD) for antifungal susceptibility testing of wild-type and non-wild-type Aspergillus species isolated from cystic fibrosis patients against antifungal agents known to be usually effective against Aspergillus spp. This study was performed to assist in the decision-making process for possible deployment of the MTS assay for antimicrobial susceptibility testing of Aspergillus species into regional public health laboratories of Mycology due to difficulties in equipping the reference BMD methods in a laboratory routine. For this purpose, a set of 40 phenotypically diverse isolates (27 wild-type, 9 non-wild-type, and 4 species with reduced susceptibility to azoles and amphotericin B (AMB)) collected from clinical samples were tested.
View Article and Find Full Text PDFPeptides
January 2025
Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan. Electronic address:
Transient polyuria during pregnancy is reportedly caused by increased arginine vasopressin (AVP) degradation due to vasopressinase produced by the placenta. The mechanism underlying transient polyuria during pregnancy has not been established. In this study we measured urine volume, urine osmolality, and AVP transcriptional activity during pregnancy in wild-type and familial neurohypophysial diabetes insipidus (FNDI) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!