The aim of the present study was to establish an integrated network of DNA methylation and RNA expression in an ovalbumin (OVA)‑induced asthma model, and to investigate the epigenetically‑regulated genes involved in asthma development. Genome‑wide CpG‑DNA methylation profiling was conducted through the use of a methylated DNA immunoprecipitation microarray and RNA sequencing was performed using three lung samples from mice with OVA‑induced asthma. A total of 35,401 differentially methylated regions (DMRs) were identified between mice with OVA‑induced asthma and control mice. Of these, 3,060 were located in promoter regions and 370 of the genes containing these DMRs demonstrated an inverse correlation between methylation and gene expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that 368 genes were upregulated or downregulated in OVA‑induced asthma samples, including genes involved in 'chemokine signalling pathway', 'focal adhesion', 'leukocyte transendothelial migration' and 'vascular smooth muscle contraction signaling' pathways. Integrated network analysis identified four hub genes, consisting of three upregulated genes [forkhead box O1 (FOXO1), SP1 transcription factor (SP1) and amyloid β precursor protein (APP)], and one downregulated gene [RUNX family transcription factor 1 (RUNX1)], all of which demonstrated an association between DNA methylation and gene expression. These genes were highly interconnected nodes in the Ingenuity Pathway Analysis module and were functionally significant. A total of four interconnected hub genes, FOXO1, RUNX1, SP1 and APP, were identified from the integrated DNA methylation and gene expression networks involved in asthma development. These results suggested that modulating these four genes could effectively control the development of asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411290PMC
http://dx.doi.org/10.3892/mmr.2020.11245DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
methylation gene
16
gene expression
16
ova‑induced asthma
16
genes
9
asthma
8
integrated network
8
genes involved
8
involved asthma
8
asthma development
8

Similar Publications

Identification of DNA methylation signatures in follicular-patterned thyroid tumors.

Pathol Res Pract

December 2024

Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Background And Aims: Follicular-patterned thyroid tumors (FPTTs) are frequently encountered in thyroid pathology, encompassing follicular adenoma (FA), follicular thyroid carcinoma (FTC), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), and follicular variant of papillary thyroid carcinoma (fvPTC). Recently, a distinct entity termed differentiated high-grade thyroid carcinoma has been described by the 5th edition of the WHO classification of the thyroid tumors, categorized as either high-grade fvPTC, high-grade FTC or high-grade oncocytic carcinoma of the thyroid (OCA). Accurate differentiation among these lesions, particular between the benign (FA), borderline (NIFTP) and malignant neoplasms (FTC and fvPTC), remains a challenge in both histopathological and cytological diagnoses.

View Article and Find Full Text PDF

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

DNA methylation age (DNAmAge) surpasses chronological age in its ability to predict age-related morbidities and mortality. This study analyzed data from 287 middle-aged twins in the Louisville Twin Study (mean age 51.9 years ± 7.

View Article and Find Full Text PDF

Structural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!