miR‑187‑3p inhibitor attenuates cerebral ischemia/reperfusion injury by regulating Seipin‑mediated autophagic flux.

Int J Mol Med

Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.

Published: September 2020

MicroRNAs (miRNAs/miRs) have been reported to affect ischemia/reperfusion (I/R)‑induced cerebral damage. miRNAs cause post‑transcriptional gene silencing by binding to the protein‑coding sequence (CDS) of mRNAs. Seipin has a potential role in regulating autophagic flux. The present study investigated the involvement of miR‑187‑3p in Seipin expression, autophagic flux and apoptosis in vitro, as well as the underlying mechanism, using PC12 cells exposed to oxygen‑glucose deprivation/reoxygenation (OGD/R), which mimicked the process of I/R. In comparison with control PC12 cells, OGD/R caused an increase in the level of miR‑187‑3p and a decrease in Seipin protein levels without changes in the level of Seipin mRNA. Using bioinformatics analysis, it was identified that miR‑187‑3p could bind to the CDS of Seipin. miR‑187‑3p inhibitor attenuated the reduction in Seipin protein expression in OGD/R‑treated PC12 cells. Following OGD/R, autophagic flux was reduced and apoptosis was enhanced, which were attenuated by inhibition of miR‑187‑3p. Compared with OGD/R‑treated PC12 cells, Seipin knockdown further impaired autophagic flux and promoted neuronal apoptosis, which were insensitive to inhibition of miR‑187‑3p. Furthermore, treatment with miR‑187‑3p inhibitor could decrease the infarction volume in a rat model of middle cerebral artery occlusion/reperfusion. The present findings indicated that miR‑187‑3p inhibitor attenuated ischemia‑induced cerebral damage by rescuing Seipin expression to improve autophagic flux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387098PMC
http://dx.doi.org/10.3892/ijmm.2020.4642DOI Listing

Publication Analysis

Top Keywords

autophagic flux
24
mir‑187‑3p inhibitor
16
pc12 cells
16
mir‑187‑3p
9
cerebral damage
8
seipin
8
seipin expression
8
cells ogd/r
8
seipin protein
8
inhibitor attenuated
8

Similar Publications

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells.

Toxics

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation.

View Article and Find Full Text PDF

Autophagic flux modulates tumor heterogeneity and lineage plasticity in SCLC.

Front Oncol

January 2025

Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Introduction: Small cell lung cancer (SCLC) is characterized by significant heterogeneity and plasticity, contributing to its aggressive progression and therapy resistance. Autophagy, a conserved cellular process, is implicated in many cancers, but its role in SCLC remains unclear.

Methods: Using a genetically engineered mouse model ( ; ; GFP-LC3-RFP-LC3△G), we tracked autophagic flux to investigate its effects on SCLC biology.

View Article and Find Full Text PDF

Tetrandrine (TET), a natural bisbenzyl isoquinoline alkaloid extracted from S. Moore, has diverse pharmacological effects. However, its effects on melanoma remain unclear.

View Article and Find Full Text PDF

Introduction: /GI.1 and GI.2 cause severe Rabbit Haemorrhagic Disease, and immune processes are among the important pathomechanisms of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!