The present study aimed to explore the possible functions of radial oxygen loss (ROL) on mangrove nutrition. A field survey was conducted to explore the relations among ROL, root anatomy and leaf N in different mangrove species along a continuous tidal gradient. Three mangroves with different ROL (Avicennia marina [A. marina], Kandelia obovata and Rhizophora stylosa) were then selected to further explore the dynamics of N at the root-soil interface. The results showed that seaward pioneer mangrove species such as A. marina appeared to exhibit higher leaf N despite growing under poorer nutrient conditions. Greater leaf N in pioneer mangroves coincided with their special root structure (e.g., high porosity together with a thin lignified/suberized exodermis) and powerful ROL. An interesting positive relation was observed between ROL and leaf N in mangroves. Moreover, rhizo-box data further showed that soil nitrification was also strongly correlated with ROL. A. marina, which had the highest ROL among the three mangrove species studied, consistently possessed the highest levels of NO3-, nitrification and ammonia-oxidizing bacteria and archaea gene copies in the rhizosphere. Besides, both NO3- and NH4+ influxes were found to be higher in the roots of A. marina when compared to those of K. obovata and R. stylosa. In summary, greater N acquisition by pioneer mangroves such as A. marina was strongly correlated with ROL which would regulate N transformation and translocation at the root-soil interface. The implications of this study may be significant in mangrove nutrition and the mechanisms involved in mangrove zonation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpaa089 | DOI Listing |
Mar Genomics
March 2025
Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:
Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:
The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.
View Article and Find Full Text PDFMar Drugs
December 2024
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Mangrove ecosystems have attracted widespread attention because of their high salinity, muddy or sandy soil, and low pH, as well as being partly anoxic and periodically soaked by tides. Mangrove plants, soil, or sediment-derived fungi, especially the species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This paper reviews the structural diversity and biological activity of secondary metabolites isolated from mangrove ecosystem-derived species over the past 5 years (January 2020-October 2024), and 417 natural products (including 170 new compounds, among which 32 new compounds were separated under the guidance of molecular networking and the OSMAC approach) are described.
View Article and Find Full Text PDFBiodivers Data J
January 2025
Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn (Pagoh Campus), KM 1, Jalan Panchor, 84600 Pagoh, Johor, Malaysia Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn (Pagoh Campus), KM 1, Jalan Panchor, 84600 Pagoh Johor Malaysia.
Mangroves and mudflats are essential intertidal habitats that support benthic communities, providing critical feeding grounds for waterbirds. However, the degradation of these habitats due to coastal reclamation poses significant threats to prey availability and waterbird populations along the South est Johor Coast. While most avian research in Johor focuses on forest birds, studies on coastal waterbirds, particularly their feeding ecology, remain scarce.
View Article and Find Full Text PDFEffective conservation of rare species necessitates the identification of critical habitats and their specific features that influence species occurrence. This study focused on smalltooth sawfish (), a critically endangered elasmobranch, to explore how predictive spatial modeling can enhance conservation efforts. By leveraging long-term occurrence and relative abundance data from scientific gillnet surveys, along with in situ environmental data, we used boosted regression trees (BRT) to pinpoint key habitat features essential for juvenile sawfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!