We conducted 2 experiments to determine lysine bioavailability from 2 lipid-coated lysine products. In an in vitro experiment we mixed each lipid-coated lysine product with either alfalfa- or corn-silage at different amounts of acidity. Scanning electron micrographs indicated that surface structure of each lipid-coated lysine particle was eroded after mixing with silage. Additionally, visual evaluation of scanning electron micrographs suggested that peripheral surface abrasion of lipid-coated lysine may be greater when lipid-coated lysine was mixed with alfalfa silage in comparison to corn silage. In a corresponding experiment, in vivo measures of lysine bioavailability to sheep from 2 lipid-coated lysine products and lysine-HCl were determined after mixing in corn silage. Plasma lysine concentrations increased linearly ( < 0.01) in response to abomasal lysine infusion indicating that our model was sensitive to increases in metabolizable lysine flow. Bioavailability of each lipid-coated lysine source and dietary lysine-HCl were calculated to be 23, 15, and 18%, respectively. Even though each dietary source of lysine increased plasma lysine, rates of increases in plasma lysine from one lipid-coated lysine source (linear; = 0.20) and lysine-HCl (linear; = 0.11) were not different from plasma lysine levels supported by diet alone. However, the rate of plasma lysine increase in response to lysine from the other lipid-coated lysine source was greater ( = 0.04) than plasma lysine from feed alone. Nonetheless, the rate of plasma lysine increase in response to lipid-coated lysine did not differ ( ≥ 0.70) from the rate of plasma lysine increase from lysine-HCl. Clearly, methods of manufacture, together with physical and chemical characteristics of diet, can impact amounts of metabolizable lysine provided from lipid-coated lysine products. Direct measures of lysine bioavailability from lipid-coated lysine products after mixing with diets should be based on measurements with the products treated similarly to the method of feeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205348 | PMC |
http://dx.doi.org/10.2527/tas2017.0037 | DOI Listing |
J Dairy Sci
June 2018
Department of Animal Science, South Dakota State University, Brookings 57007. Electronic address:
We conducted 2 experiments to determine lysine loss from 2 lipid-coated lysine products after mixing with silage. In our first experiment, we mixed 2 lipid-coated lysine products, crystalline lysine or crystalline lysine and amounts of lipid identical to amounts included in lipid-coated lysine products, with alfalfa or corn silage that had 2 different amounts of acidity. Lysine appeared to disassociate from lipid-coated lysine products in a nonlinear manner after mixing with either alfalfa or corn silage at different amounts of acidity.
View Article and Find Full Text PDFTransl Anim Sci
September 2017
Department of Animal Science, South Dakota State University, Brookings 57007.
We conducted 2 experiments to determine lysine bioavailability from 2 lipid-coated lysine products. In an in vitro experiment we mixed each lipid-coated lysine product with either alfalfa- or corn-silage at different amounts of acidity. Scanning electron micrographs indicated that surface structure of each lipid-coated lysine particle was eroded after mixing with silage.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
November 2014
Department of Basic Science and Craniofacial Biology, New York University, New York, NY, USA.
Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!