Purpose: Sagittal Craniosynostosis (CSO) occurs when the sagittal suture of a growing child's skull is fused. Surgery is the primary treatment for CSO. Surgical treatment involves removing the affected bones and increasing the volume of the cranium by repositioning the bone segments or using external forces to guide growth. These external forces are often achieved by internal springs or external helmet therapy and depend on surgical judgment based on patient age, severity, and subtypes of CSO. Physicians usually classify CSO subtypes by examining CT images. In our previous work, we built an objective computerized system to mimic the physician's diagnostic process based on more than 100 hand-crafted features. However, hand-crafted features-based methods have limitations in representing all aspect features of the CSO images. To improve feature extraction efficiency, classification accuracy, and reduce subjectivity in the choice of surgical techniques, in this study, we developed a deep learning-based method to learn advanced features for the classification of CSO subtypes.
Methods: First, a Hounsfield Unit (HU) threshold-based method was used to segment 3D skulls from CT slices. Second, the 3D skulls were mapped to a two-dimension space by hemispherical projection to obtain binary images with a resolution of 512 × 512. These binary images were augmented to generate a new dataset for training deep convolutional neural networks. Finally, the pre-trained deep learning model was fine-tuned on the generated dataset using transfer learning method. Both training accuracy and cross-entropy curves were used to assess the performance of the proposed method.
Results: Three deep convolutional neural networks were built based on the manual classification results of CSO patients by three surgeons. The classification difference between surgeons was 54%. The prediction accuracy of the three deep learning models based on the generated dataset was greater than 90%, which was higher than the accuracy from the previous models (72%). The model based on the classification results of the senior surgeon achieved the highest performance accuracy (75%) in unseen real data, compared to 25% and 37.5% for two junior surgeons, respectively.
Conclusion: Our experimental results show that deep learning is superior to the hand-crafted feature-based method for sagittal CSO classification. The performance of deep learning models still depends on the quality of the original data. The classification variability of physicians can result in differential model outputs. When given more sagittal CSO images with proper annotations, the deep learning-based models can be more stable, approximate the diagnosis performance of physicians and have the potential to reduce the inter-observer variability thereby providing clinical insight into research and the treatment selection in patients with CSO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377631 | PMC |
Med Biol Eng Comput
January 2025
School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
March 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
Purpose: Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking.
View Article and Find Full Text PDFEur Radiol
January 2025
Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.
Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!