Transgenerational epigenetic reprogramming of early embryos: a mechanistic model.

Environ Epigenet

Institute of Translational Pharmacology, National Research Council (CNR), 100 Via del Fosso del Cavaliere, 00133 Rome, Italy.

Published: January 2020

AI Article Synopsis

Article Abstract

The notion that epigenetic information can be transmitted across generations is supported by mounting waves of data, but the underlying mechanisms remain elusive. Here, a model is proposed which combines different lines of experimental evidence. First, it has been shown that somatic tissues exposed to stressing stimuli release circulating RNA-containing extracellular vesicles; second, epididymal spermatozoa can take up, internalize and deliver the RNA-containing extracellular vesicles to oocytes at fertilization; third, early embryos can process RNA-based information. These elements constitute the building blocks upon which the model is built. The model proposes that a continuous stream of epigenetic information flows from parental somatic tissues to the developing embryos. The flow can cross the Weismann barrier, is mediated by circulating vesicles and epididymal spermatozoa, and has the potential to generate epigenetic traits that are then stably acquired in the offspring. In a broader perspective, it emerges that a natural 'assembly line' operates continuously, aiming at passing the parental epigenetic blueprint in growing embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368376PMC
http://dx.doi.org/10.1093/eep/dvaa009DOI Listing

Publication Analysis

Top Keywords

early embryos
8
somatic tissues
8
rna-containing extracellular
8
extracellular vesicles
8
epididymal spermatozoa
8
transgenerational epigenetic
4
epigenetic reprogramming
4
reprogramming early
4
embryos
4
embryos mechanistic
4

Similar Publications

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

Favorable Nonclinical Safety Profile of RSVpreF Bivalent Vaccine in Rats and Rabbits.

Vaccines (Basel)

December 2024

Drug Safety Research and Development, Pfizer Research & Development, Pearl River, NY 10965, USA.

: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18-59-year-old individuals with high-risk conditions for prevention of RSV disease.

View Article and Find Full Text PDF

Pregnancy failure in the first trimester of cows significantly impacts the efficiency of the dairy industry. As a type I interferon exclusively to ruminants, IFN-τ plays a key role in maternal recognition and immune tolerance of fetuses. Macrophages are the most common immune cells within the ruminant endometrium.

View Article and Find Full Text PDF

We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!