Anthropogenic impacts in groundwater ecosystems remain poorly known. Climate change is omnipresent, while groundwater salinization poses serious long-term environmental problems in arid and semi-arid regions, and is exacerbated by global warming. Both are present threats to the conservation of groundwater ecosystems, which harbour highly specialized species, with peculiar traits and limited geographic distributions. We tested the temperature and salinity tolerance of groundwater-adapted invertebrates to understand the effect of global warming and salinization in groundwater ecosystems. We used species representative of groundwater-adapted crustaceans: two copepods (harpacticoid and cyclopoid) and one syncarid, endemic to Australia. Our results show that 50% of the populations died at salt concentrations between 2.84 to 7.35 g NaCl/L after 96 h, and at 6.9 °C above the ambient aquifer temperature for copepods and more than 10 °C for syncarids. Both copepods were more sensitive to temperature and NaCl than the syncarid. We calculated a salinity risk quotient of 9.7 and predicted the risk of loss of 10% of syncarid and 20% of copepod population abundances under a worst-case scenario of global warming predictions for 2070. These results highlight that both salinity and temperature increases pose a risk to the ecological integrity of groundwater ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378218 | PMC |
http://dx.doi.org/10.1038/s41598-020-69050-7 | DOI Listing |
Ground Water
December 2024
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of Ra and Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.
Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia.
The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France.
The ubiquitous presence of fragmented plastic particles needs comprehensive understanding of its fate in the environment. The long-term persistence of microplastics (MPs) in the environment is a significant threat to the ecosystem. Even though various degradation mechanisms (physical, chemical, and biological) of commonly used plastics have been demonstrated, quantifying the degradation of MPs over time to predict the consequence of plastic littering and its persistence in the environment remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!