In this study, we investigate how the length of amphiphilic β-sheet forming peptides affects their interaction with membranes. Four polycationic model peptides with lengths from 6 to 18 amino acids were constructed from simple Lys-Leu repeats, giving [KL]. We found that (1) they exhibit a pronounced antimicrobial activity with an intriguing length dependent maximum for [KL] with 10 amino acids; (2) their hemolytic effect, on the other hand, increases steadily with peptide length. CD analysis (3) and TEM (4) show that all peptides-except for the short [KL]-aggregate into amyloid-like fibrils in the presence of phosphate ions, which in turn has a critical effect on the results in (1) and (2). In fact, (5) vesicle leakage reveals an intrinsic membrane-perturbing activity (at constant peptide mass) of [KL] > [KL] > [KL] in phosphate buffer, which changes to [KL] ≈ [KL] ≈ [KL] in PIPES. A specific interaction with phosphate ions thus explains the subtle balance between two counteracting effects: phosphate-induced unproductive pre-aggregation in solution versus monomeric membrane binding and vigorous lipid perturbation due to self-assembly of the bound peptides within the bilayer. This knowledge can now be used to control and optimize the peptides in further applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378186 | PMC |
http://dx.doi.org/10.1038/s41598-020-69162-0 | DOI Listing |
BMC Genomics
January 2025
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.
Background: Additional to total protein content, the amino acid (AA) profile is important to the nutritional value of soybean seed. The AA profile in soybean seed is a complex quantitative trait controlled by multiple interconnected genes and pathways controlling the accumulation of each AA. With a total of 621 soybean germplasm, we used three genome-wide association study (GWAS)-based approaches to investigate the genomic regions controlling the AA content and profile in soybean.
View Article and Find Full Text PDFNature
January 2025
Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
Nature
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.
View Article and Find Full Text PDFJ Neurosci
January 2025
Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213;
Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!