N-Acetylglucosaminyltransferase II (GNTII), which catalyzes the transfer of N-acetylglucosamine to N-glycans, plays an essential role in the biosynthesis of branched and complex-type N-glycans. Some characteristics of the GNTIIs from various species have been identified, but not all features have been revealed because some insects have GNTII redundancies due to the possession of splicing variants. In this study, we focused on four splicing variants of silkworm Bombyx mori GNTII (BmGNTII) that differ only in the absence or presence of Exon 2, Exon 9 or both, and we characterized the spatiotemporal transcript levels and enzymatic properties of each. Two of the splicing variants, BmGNTII-B and BmGNTII-D, lack Exon 9, and were expressed more highly in silk glands than any other organs. With respect to the enzymatic properties, optimal temperature and pH were similar among the recombinant BmGNTIIs, but the specific activities and temperature stabilities differed according to the presence or absence of Exon 9 in the splicing variants. These results demonstrate that the B. mori genome encodes splicing variants of GNTII with different enzymatic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.05.065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!