Increased concentration of greenhouse gases in the air is acknowledged as one of the main reason for observed global climatic change. This phenomenon significantly affects the species geographical distribution, and changes their richness distribution pattern. Oak (Quercus L.) is an important component of forests in China, and it has significant ecological value. Based on the distribution data of 35 species and 19 bioclimatic variables, the potential richness distribution of Quercus L. in China was predicted using the MaxEnt model under present climatic conditions and three different emission scenarios in the years 2050 and 2070 with six General Circulation Models (GCMs). The results revealed that Quercus L. at present was primarily distributed in the mountainous areas of southwestern China. The simulations indicated that climate change could affect the spatial pattern of the richness distribution, and if climate change intensified, its impact would gradually increase. As temperatures rise, the distribution of Quercus L. was predicted to be concentrated, and suitable areas of certain species would contract. These species may migrate to high altitudes or high latitudes. The high percentage of species lost is the reason for the higher turnover values in the mountainous areas, while other regions are mostly be influenced by the high percentage of species gained associated with the northward shift of species. Predicting changes in the richness distribution pattern of Quercus L. as a result of climate change can help us understand the biogeography of Quercus L. and enact conservation strategies to minimize the impacts of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.140786 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!