K63-linked polyubiquitination requires the ubiquitin-conjugating enzyme Ubc13 and a Ubc/E2 variant Uev. Lower eukaryotic organisms contain one UEV gene required for DNA-damage tolerance, while vertebrates and higher plants contain multiple UEV genes with distinct functions. In contrast, Drosophila contains only one UEV gene designated dUev1a. Here we report that dUev1a forms a stable heterodimer with Ben, the Drosophila Ubc13 ortholog, that dUev1a-F15E completely abolishes the interaction, and that a conserved dUev1a-F15Y substitution severely reduces its interaction with Ben. dUev1a functionally rescues the corresponding yeast mms2 null mutant from killing by various DNA-damaging agents in a Ben-dependent manner, and the heterozygous dUev1a mutant flies are more sensitive to DNA-damaging agent, indicating that the function of UEV in DNA-damage response is conserved throughout eukaryotes. Meanwhile, dUev1a mutant flies displayed reduced mobility characteristic of defects in the central nervous system and reminiscent of the bendless phenotypes, suggesting that dUev1a acts together with Ben in this process. Our observations collectively imply that dUev1a is dually required for DNA-damage response and neurological signaling in Drosophila, and that these processes are mediated by the Ben-dUev1a complex that promotes K63-linked polyubiquitination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2020.109719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!