Since cardiovascular diseases are the number one cause of death in worldwide, and the traditional treatments have limitations, the emergence of cardiac tissue engineering (CTE) can be a promising approach. In this study, scaffold fabrication from the solubilized cardiac extracellular matrix (ECM) accompanied with alginate and chitosan for CTE was carried out. The influence of blending ratios on chemical and physical properties of the scaffolds including FTIR spectroscopy, porosity, pore size, and their mechanical properties were investigated. The porosity of scaffolds was more than 96% with very high swelling rate while maintaining their stability in PBS solution. Blending ECM with chitosan and alginate significantly improve the tensile strength of ECM. FTIR spectrum of scaffolds demonstrated interaction of solubilized ECM with two opposite-charged polysaccharides. The proliferation of human mesenchymal stem cells (hMSCs) on the ternary scaffolds using MTS assay, revealed that blending ECM with polysaccharides at ratio of 75: 25 (E75/P25) led to improve the proliferation of hMSCs on scaffolds. Scanning electron microscope (SEM) revealed the porous structure and the presence of hMSCs cells inside the pores. In addition, histological analysis confirmed that cardiomyocyte penetration inside scaffolds after 7 days of culture. The immunofluorescence staining revealed that higher expression of cardiac marker (cTnT) in ternary scaffold in comparison with ECM

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.07.134DOI Listing

Publication Analysis

Top Keywords

ternary scaffolds
8
cardiac tissue
8
tissue engineering
8
blending ecm
8
scaffolds
7
ecm
6
cardiac
5
cardiac ecm/chitosan/alginate
4
ecm/chitosan/alginate ternary
4
scaffolds cardiac
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!