Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticles (NPs) are of the most interesting novel vehicles for effective drug delivery to humans. Freeze drying is known as an engaging process to improve the long lasting stability of NPs formulations. This study aims to elucidate the importance of various parameters involving in freeze-drying of the most common pharmaceutical/nutraceutical NPs including nanosuspensions, nanocrystals (NCs), cocrystals/nanococrystals, nanoemulsions (NEs), nanocapsules (NCPs) and nanospheres (NSPs). Regarding this, the therapeutic goals of NPs and specifications of drug must be considered. According to our survey, the most influential factors for achieving optimum results include type and concentration of cryoprotectant/lyoprotectant, stabilizer structure and concentration, the NPs concentration in solution, freezing, annealing, and drying rate, the interaction between protectants and stabilizer, solvent type and antisolvent to solvent ratio. The study shows that for each class of NPs, specific variables are of highest significance and should be optimized. For instance, about NCs, freezing rate and antisolvent/solvent ratio should be particularly considered and for emulsified NPs, the best results have been obtained by 5-20% of saccharides as cryoprotectants. These findings suggest that to obtain a product with the lowest aggregation and particle size (PS), optimization of the effective factors in formulation and lyophilization process are essential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2020.07.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!