The inhibitory glycine receptor (GlyR) is a key mediator of synaptic signalling in spinal cord, brain stem, and higher centres of the central nervous system. We examined the glycinergic activity of sarcophine (SN), a marine terpenoid known for its various biological activities, and its trans-diol derivative (7S, 8R)-dihydroxy-deepoxysarcophine (DSN). SN was isolated from the Red Sea soft coral Sacrophyton glaucum, DSN was semisynthesized by hydrolysis of the epoxide ring. In cytotoxicity tests against HEK293 cells, SN and DSN had LD values of 29.3 ± 3.0 mM and 123.5 ± 13.0 mM, respectively. Both compounds were tested against recombinant human α1 glycine receptors in HEK293 cells using whole-cell recording techniques. Both, SN and DSN were shown for the first time to be inhibitors of recombinant glycine receptors, with Kvalues of 2.1 ± 0.3 μM for SN, and 109 ± 9 μM for DSN. Receptor inhibition was also studied in vivo in a mouse model of strychnine toxicity. Surprisingly, in mouse experiments strychnine inhibition was not augmented by either terpenoid. While DSN had no significant effect on strychnine toxicity, SN even delayed strychnine effects. This could be accounted for by assuming that strychnine and sarcophine derivatives compete for the same binding site on the receptor, so the less toxic sarcophine can prevent strychnine from binding. The combination of modulatory activity and low level of toxicity makes sarcophines attractive structures for novel glycinergic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2020.07.002 | DOI Listing |
Drug Res (Stuttg)
January 2025
Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Department of Clinical Psychology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
Glycine receptors (GlyRs) belong to the ligand-gated ion channel receptor superfamily and are widely distributed throughout the central nervous system. GlyRs are essential for maintaining visual, auditory, sensory and motor functions, and abnormalities in its structure and function can lead to various neurological disorders. This review aims to provide an extensive analysis of the structure, function and regulatory mechanisms of GlyRs, and evaluate its role in various central nervous system diseases.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.
View Article and Find Full Text PDFMolecules
December 2024
Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland.
The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Biochemistry, College of Medicine, University of Lagos, Lagos State, Nigeria.
Schizophrenia (SZ) is a complex, chronic mental disorder characterized by positive symptoms (such as delusions and hallucinations), negative symptoms (including anhedonia, alogia, avolition, and social withdrawal), and cognitive deficits (affecting attention, processing speed, verbal and visuospatial learning, problem-solving, working memory, and mental flexibility). Extensive animal and clinical studies have emphasized the NMDAR hypofunction hypothesis of SZ. Glycine plays a crucial role as an agonist of NMDAR, enhancing the receptor's affinity for glutamate and supporting normal synaptic function and plasticity, that is, signal transmission between neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!