The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat.

Plant Biotechnol J

Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

Published: February 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868967PMC
http://dx.doi.org/10.1111/pbi.13453DOI Listing

Publication Analysis

Top Keywords

bzip transcription
4
transcription factor
4
factor tabzip15
4
tabzip15 improves
4
improves salt
4
salt stress
4
stress tolerance
4
tolerance wheat
4
bzip
1
factor
1

Similar Publications

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

The NAC transcription factor LpNAC48 promotes trichome formation in Lilium pumilum.

Plant Physiol

January 2025

Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.

Trichomes play a crucial role in plant resistance to abiotic and biotic stresses, and their development and characteristics vary across different species. This study demonstrates that trichomes of Lilium pumilum exhibit synchronized growth during flower bud differentiation and enhance the plant's adaptability to UV-B radiation and aphid infection. We identified LpNAC48, a NAC family transcription factor (TF), that interacted with the B-box (BBX) family TF LpBBX28, during trichome formation in L.

View Article and Find Full Text PDF

Carbon dioxide suppresses filamentous growth in the human fungal pathogen Candida tropicalis.

Microb Pathog

December 2024

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China. Electronic address:

A striking characteristic of the human fungal pathogen Candida albicans is its ability to switch between budding yeast morphology and the filamentous form, facilitating its adaptation to changing host environments. The filamentous growth of C. albicans is mediated by various environmental factors, such as carbon dioxide (CO), N-acetylglucosamine (GlcNAc), serum, and high temperature.

View Article and Find Full Text PDF

Background: Alfalfa (Medicago sativa L.) is an important high-quality forage crop. Low temperature is an abiotic stress factor that affects the distribution and productivity of alfalfa.

View Article and Find Full Text PDF

Melatonin (MT) serves an indispensable function in plant development and their response to abiotic stress. Although numerous drought-tolerance genes have been ascertained in wheat, further investigation into the molecular pathways controlling drought stress tolerance remains necessary. In this investigation, it was observed that MT treatment markedly enhanced drought resistance in wheat by diminishing malondialdehyde (MDA) levels and augmenting the activity of antioxidant enzymes POD, APX, and CAT compared to untreated control plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!